-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstd_vector_test.cpp
106 lines (80 loc) · 2.65 KB
/
std_vector_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
//
// Copyright Chong Peng 2017
//
#include <Eigen/Dense>
#include <iostream>
#include "type_traits.h"
#include "std_vector_interface.h"
#include "symm_davidson_diag.h"
#include "nonsymm_davidson_diag.h"
using namespace code_example;
int main() {
std::cout.precision(12);
std::cout << "Nonsymmetric Davidson Diagnolization Using std::vector \n";
/// typedef the Array type to use
using Array = std::vector<double>;
// variables
const std::size_t n = 200;
const double sparse = 0.1;
const std::size_t n_roots = 5; // number of roots to solve in davidson
const double converge = 1.0e-10; // convergence threshold in davidson
const std::size_t max_iter = 100; // max iteration in davidson
// initialize symmetric matrix
ColMatrix<double> A = ColMatrix<double>::Zero(n, n);
for (auto i = 0; i < n; i++) {
A(i, i) = i + 1;
}
A = A + sparse * ColMatrix<double>::Random(n, n);
EigenVector<double> A_diagonal = A.diagonal();
// eigen solve
Eigen::EigenSolver<ColMatrix<double>> es(A);
EigenVector<double> e = es.eigenvalues().real();
std::sort(e.data(), e.data()+e.size());
e = e.segment(0,n_roots);
std::cout << "Reference Result from EigenSolve: " << std::endl
<< e << std::endl;
/// construct the SymmDavidsonDiag object
NonSymmDavidsonDiag<Array> dvd(n_roots);
/// make the initial guess use unit vector
std::vector<Array> guess(n_roots);
{
for (std::size_t i = 0; i < n_roots; i++) {
guess[i] = Array(n, 0.0);
guess[i][i] = 1;
}
}
/// make the preconditioner
auto pred = [&A_diagonal](const EigenVector<double> &e,
std::vector<Array> &guess) {
for (std::size_t i = 0; i < guess.size(); i++) {
const auto ei = e[i];
auto &guess_i = guess[i];
const auto n_r = guess_i.size();
for (std::size_t i = 0; i < n_r; i++) {
guess_i[i] = guess_i[i] / (ei - A_diagonal[i]);
}
}
};
/// make the operator
auto op = [&A,n](const std::vector<Array> &vec) {
const std::size_t n_vec = vec.size();
std::vector<Array> HC(n_vec);
const char trans = 'N';
const int32_t rows = A.rows();
const int32_t cols = A.cols();
const double alpha = 1.0;
const double beta = 0.0;
const int32_t inc = 1;
for (std::size_t i = 0; i < n_vec; i++) {
HC[i] = Array(vec[i].size(), 0.0);
dgemv_(&trans, &rows, &cols, &alpha, A.data(), &rows, vec[i].data(), &inc,
&beta, HC[i].data(), &inc);
}
return HC;
};
/// solve
auto eig = dvd.solve(guess, op, pred, converge, max_iter);
std::cout << "NonSymmDavidsonDiag result: " << std::endl;
std::cout << eig << std::endl;
return 0;
}