-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp_run.py
289 lines (224 loc) · 8.96 KB
/
app_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import pandas as pd
import streamlit as st
import requests
import re
from PIL import Image
from io import BytesIO
from _common.database_communicator.db_connector import DBConnector
from _common.database_communicator.tables import (BargainletterEmails,
DataMain, Opportunities)
from _common.misc.variables import (LOCATION_LIST, PROPERTY_CONDITION_LIST,
PROPERTY_TYPE_LIST, STATUS_LIST)
from app.dashboards import Dashboards
from ml_model.pricepy_model import PricepyModel
st.set_page_config(
page_title="Pricepy",
page_icon="app/images/logo_icon.png"
)
@st.cache_resource
def create_db_connection():
dbconn = DBConnector()
engine = dbconn.create_sql_engine()
return dbconn, engine
@st.cache_data
def load_dashboards_data(_dbconn, _engine):
session = _dbconn.create_session()
query = session.query(DataMain)
return pd.read_sql(query.statement, _engine)
@st.cache_data
def load_opportunities_data(_dbconn, _engine):
session = _dbconn.create_session()
query = session.query(Opportunities).add_columns(DataMain.location, DataMain.image_url, DataMain.price).outerjoin(
DataMain)
return pd.read_sql(query.statement, _engine)
def add_bargainletter_info_to_db(_dbconn, email, max_real_price, min_potential_gain, location):
session = _dbconn.create_session()
email_obj = BargainletterEmails(email=email, max_real_price=max_real_price,
min_potential_gain=min_potential_gain / 100, location=location)
session.add(email_obj)
session.commit()
session.close()
@st.cache_resource
def load_model():
model = PricepyModel()
model.load_model()
return model
def is_valid_email(email):
email_regex = r'^\S+@\S+\.\S+$'
return re.match(email_regex, email) is not None
def format_number_with_spaces(number):
formatted_number = '{:,.0f}'.format(round(number, -2)).replace(',', ' ')
return formatted_number
def show_button(url):
st.markdown(
f'<a href="{url}" style="display: inline-block; padding: 8px 12px; background-color: #10500a; color: white; '
f'text-align: center; text-decoration: none; font-size: 16px; border-radius: 8px;">Zobacz 👀</a>',
unsafe_allow_html=True
)
def adjust_df(df_to_show, df, list, display_msg):
if df_to_show.shape[0] in list:
display_msg = True
return df, display_msg
else:
return df_to_show, display_msg
def display_property_info(df, index):
price = format_number_with_spaces(df.loc[index, "price"])
predicted_price = format_number_with_spaces(df.loc[index, "predicted_price"])
response = requests.get(df.loc[index, "image_url"])
img = Image.open(BytesIO(response.content))
resized_img = img.resize(common_size)
st.image(resized_img)
st.markdown("#### " + df.loc[index, "location"])
st.markdown("**Rzeczywista cena:** " + str(price) + " zł", unsafe_allow_html=True)
st.markdown("**Przewidywana cena:** " + str(predicted_price) + " zł", unsafe_allow_html=True)
url = df.loc[index, "url"]
show_button(url)
hide_img_fs = '''
<style>
button[title="View fullscreen"] {
visibility: hidden;
}
.block-container {
padding-top: 1rem;
}
</style>
'''
st.markdown(hide_img_fs, unsafe_allow_html=True)
dbconn, engine = create_db_connection()
df = load_opportunities_data(dbconn, engine)
model = load_model()
common_size = (200, 150)
display_msg = False
st.image('app/images/logo.png', width=385)
tab1, tab2, tab3, tab4 = st.tabs(
["Okazje inwestycyjne", "Ile to kosztuje?", "Raporty", "Bargainletter"]
)
with tab1:
col1, col2, col3 = st.columns([0.35, 0.5, 0.15])
with col1:
location = st.selectbox("Lokalizacja", options=['Cały Poznań'] + LOCATION_LIST, label_visibility='hidden')
df_to_show = df[df['location'] == location].reset_index()
df_to_show = df if location == 'Cały Poznań' else df_to_show
col4, col5, col6 = st.columns(3)
with col4:
df_to_show, display_msg = adjust_df(df_to_show, df, [0], display_msg)
display_property_info(df=df_to_show, index=0)
with col5:
df_to_show, display_msg = adjust_df(df_to_show, df, [0, 1], display_msg)
display_property_info(df=df_to_show, index=1)
with col6:
df_to_show, display_msg = adjust_df(df_to_show, df, [0, 1, 2], display_msg)
display_property_info(df=df_to_show, index=2)
if display_msg:
st.warning('Oj, niewiele okazji w tej lokalizacji...', icon='😔')
st.markdown(
"""
---
"""
)
col7, col8 = st.columns([0.7, 0.3])
with col7:
st.markdown("#### Pricepy")
st.text(
"Precyzyjnie oszacujemy cenę każdego\nmieszkania oraz wskażemy najlepsze\ndostępne oferty, zapewniając "
"najbardziej\naktualne informacje o nieruchomościach."
)
with col8:
st.markdown("#### Kontakt")
st.text("Adres")
st.text("Telefon XXX XXX XXX")
st.text("Mail [email protected]")
with tab2:
with st.form("Properties"):
col1, col2 = st.columns([0.5, 0.5])
with col1:
location = st.selectbox("Lokalizacja", options=LOCATION_LIST)
size = st.number_input("Metraż", min_value=1, value=60)
with col2:
property_condition = st.selectbox(
"Stan nieruchomości", options=PROPERTY_CONDITION_LIST
)
rooms = st.slider("Liczba pokojów", min_value=1, max_value=10, value=3)
with st.expander("Więcej cech"):
col3, col4 = st.columns([0.5, 0.5])
with col3:
status = st.selectbox(
"Rynek", options=STATUS_LIST, index=None, placeholder="brak informacji"
)
year_built = st.number_input(
"Rok budowy",
min_value=1700,
max_value=2050,
value=None,
placeholder="brak informacji",
)
with col4:
property_type = st.selectbox(
"Typ budynku",
options=PROPERTY_TYPE_LIST,
index=None,
placeholder="brak informacji",
)
floor = st.number_input(
"Piętro", min_value=0, value=None, placeholder="brak informacji"
)
col5, col6, col7 = st.columns([0.43, 0.32, 0.25])
with col6:
btn_check = st.form_submit_button("Sprawdź", type="primary")
if btn_check:
floor = "brak informacji" if floor is None else floor
year_built = "brak informacji" if year_built is None else year_built
data = {
"status": [status],
"size": [size],
"property_type": [property_type],
"rooms": [rooms],
"floor": [floor],
"year_built": [year_built],
"property_condition": [property_condition],
"location": [location]
}
data = pd.DataFrame(data)
data.fillna("brak informacji", inplace=True)
predicted_price = model.predict(data)[0][0]
predicted_price_per_m2 = predicted_price / size
if (predicted_price_per_m2 > 20000) or (predicted_price_per_m2 < 8000):
st.error('Proszę dobrać inne parametry', icon='❌')
else:
st.markdown("### Przewidywana cena: " + str(format_number_with_spaces(predicted_price)) + " zł")
with tab3:
dashboards_df = load_dashboards_data(dbconn, engine)
plots = Dashboards(data=dashboards_df).get_all_figs()
for plot in plots:
st.plotly_chart(plot)
with tab4:
col1, col2, col3 = st.columns([0.40, 0.30, 0.30])
with col2:
st.markdown('#### Bargainletter')
with st.form("Bargainletter"):
col4, col5 = st.columns([0.5, 0.5])
with col4:
location = st.selectbox("Lokalizacja", options=['Cały Poznań'] + LOCATION_LIST, key='loc_bl')
max_real_price = st.number_input(
"Maksymalna rzeczywista cena mieszkania [zł]",
min_value=0,
value=700000,
step=10000
)
with col5:
min_potential_gain = st.number_input(
"Minimalny procent zysku",
min_value=0,
max_value=100,
value=10
)
email = st.text_input('Email', placeholder='[email protected]')
col6, col7, col8 = st.columns([0.421, 0.279, 0.30])
with col7:
btn_subskrybuj = st.form_submit_button('Subskrybuj', type="primary")
if btn_subskrybuj:
if is_valid_email(email):
add_bargainletter_info_to_db(dbconn, email, max_real_price, min_potential_gain, location)
st.success('Super oferty już lecą!', icon="✅")
else:
st.error('Wprowadź poprawny mail!', icon="❗")