-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathExperiments.py
270 lines (221 loc) · 9.59 KB
/
Experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# -*- coding: utf-8 -*-
#### Script for Liwc vocabulary evaluation
####
#### There will be used three dictionaries:
####
#### LIWC for Portuguese (Subject of the evaluation)
#### OpinionLexicon
#### SentiLex
####
#### Two experiments are conducted
#### Vocabulary Agreeement
#### Score eachieved by each vocabulary in a classification task
####
#### The script runs on python 2.7. All the information is printed on the screen
####
####
#### Author: Pedro Paulo Balage Filho
#### Version: 1.0
#### Date: 05/12/12
# Import Libraries
# Necessary NLTK library
# Each dictionary has its own reader
from ReLi import ReLiCorpusReader
from Liwc import LiwcReader
from OpinionLexicon import OpLexiconReader
from SentiLex import SentiLexReader
from LexiconClassifier import Classifier
from nltk.metrics import ConfusionMatrix, precision, recall, f_measure, accuracy
# Load Dictionaries
liwc = LiwcReader('Dictionaries/LIWC/LIWC2007_Portugues_win.dic')
oplexicon = OpLexiconReader('Dictionaries/oplexicon/lexico_v2.1txt')
sentilex = SentiLexReader('Dictionaries/SentiLex/SentiLex-flex-PT02.txt')
##############################################
###### Vocabulary Disagreement
##############################################
# Simple agreement. Counts all words: neutral, positive and negative
print '########## Agreement ###########'
dictionaries = [liwc,oplexicon,sentilex]
agreement = dict()
# all dictionaries must have the methods vocabulary(), polarity() and get_name()
for i,dict_i in enumerate(dictionaries):
for j,dict_j in enumerate(dictionaries):
# avoid to do check between the same dictionaries again
if i < j:
vocab_i = dict_i.vocabulary()
vocab_j = dict_j.vocabulary()
agree = 0
disagree = 0
# I am only computing the vocabulary both have in common
# (intersection)
same_vocab = vocab_i.intersection(vocab_j)
total = len(same_vocab)
for element in list(same_vocab):
if dict_i.polarity(element) == dict_j.polarity(element):
agree += 1
else:
disagree += 1
name_i = dict_i.get_name()
name_j = dict_j.get_name()
if name_i not in agreement:
agreement[name_i] = dict()
agreement[name_i][name_j] = '{:.2%} out of {} entries'.format(float(agree) / float(total),total)
# print agreement information
for i in agreement:
for j in agreement[i]:
print 'Agreement between ',i,' and ', j, ' :', agreement[i][j]
# Polar agreement. Only uses positive or negative terms
print '########### Polar Agreement #############'
dictionaries = [liwc,oplexicon,sentilex]
agreement = dict()
# all dictionaries must have the methods vocabulary_polar(), polarity() and get_name()
for i,dict_i in enumerate(dictionaries):
for j,dict_j in enumerate(dictionaries):
if i < j:
vocab_i = dict_i.vocabulary_polar()
vocab_j = dict_j.vocabulary_polar()
agree = 0
disagree = 0
# intersection of polar vocabulary
same_vocab = vocab_i.intersection(vocab_j)
total = len(same_vocab)
for element in list(same_vocab):
if dict_i.polarity(element) == dict_j.polarity(element):
agree += 1
else:
disagree += 1
name_i = dict_i.get_name()
name_j = dict_j.get_name()
if name_i not in agreement:
agreement[name_i] = dict()
agreement[name_i][name_j] = '{:.2%} out of {} entries'.format(float(agree) / float(total),total)
for i in agreement:
for j in agreement[i]:
print 'Agreement between ',i,' and ', j, ' :', agreement[i][j]
##### Some examples of LIWC agreements and disagreements with opinion lexicon #########
liwc_vocab = liwc.vocabulary_polar()
oplexicon_vocab = oplexicon.vocabulary_polar()
sentilex_vocab = sentilex.vocabulary_polar()
agree = []
disagree = []
same_vocab = liwc_vocab.intersection(oplexicon_vocab)
total = len(same_vocab)
for element in list(same_vocab):
# check agreement
if liwc.polarity(element) == oplexicon.polarity(element):
agree.append((element,liwc.polarity(element)))
else:
disagree.append((element,liwc.polarity(element),oplexicon.polarity(element)))
# print the examples
print '\n\nAGREEMENT EXAMPLES (OpinionLexicon)'
print 'pol\tword'
for word, pol in sorted(agree[:20]):
print pol,'\t', word
print '\n\nDISAGREEMENT EXAMPLES (OpinionLexicon)'
print 'lwic\toplex\tword'
for word, pol1, pol2 in sorted(disagree[:40]):
print pol1,'\t', pol2, '\t' , word
##############################################
###### Performance in classification
##############################################
reli = ReLiCorpusReader()
#################### Predicate classification ######################
# In a aspect-based sentiment analysis, the opinion
# has the aspect (or feature) and the predicate (evaluation over the aspect)
negative_aspects = reli.opinion_aspects(polarity='negative')
negative_words = []
for aspect,predicate,pol in negative_aspects:
negative_words.append(predicate)
positive_aspects = reli.opinion_aspects(polarity='positive')
positive_words = []
for aspect,predicate,pol in positive_aspects:
positive_words.append(predicate)
print '#########################################################################'
print '######################## Opinion classification #######################'
print '#########################################################################'
dictionaries = [liwc,oplexicon,sentilex]
for dictionary in dictionaries:
# from LexiconClassifier library
classifier = Classifier(dictionary)
# build the train and test set
word_vector = negative_words + positive_words
gold_standard = [-1 for i in range(len(negative_words))] + [1 for i in range(len(positive_words))]
results = [classifier.classify(s) for s in word_vector]
# print the classification results
print 'Dictionary : ', dictionary.get_name(), '\n'
print ConfusionMatrix(gold_standard,results).pp()
print 'Accuracy: ', accuracy(gold_standard,results)
for c in [0,1,-1]:
print 'Metrics for class ', c
gold = set()
test = set()
for i,x in enumerate(gold_standard):
if x == c:
gold.add(i)
for i,x in enumerate(results):
if x == c:
test.add(i)
print 'Precision: ', precision(gold, test)
print 'Recall : ', recall(gold, test)
print 'F_measure: ', f_measure(gold, test)
print '\n\n'
#################### Sentences classification ##########################
# Not reported in the paper because LIWC doesn't have neutral class
positive_sents = [reli.words_sentence_pos(s) for s in reli.sents(polarity='positive')]
negative_sents = [reli.words_sentence_pos(s) for s in reli.sents(polarity='negative')]
neutral_sents = [reli.words_sentence_pos(s) for s in reli.sents(polarity='neutral')]
print '#########################################################################'
print '###################### Sentences classification #########################'
print '#########################################################################'
dictionaries = [liwc,oplexicon,sentilex]
for dictionary in dictionaries:
classifier = Classifier(dictionary)
sentence_vector = negative_sents + positive_sents + neutral_sents
sitive_sents = [reli.words_sentence_pos(s) for s in reli.sents(polarity='positive')]
gold_standard = [-1 for i in range(len(negative_sents))]
gold_standard += [1 for i in range(len(positive_sents))] + [0 for i in range(len(neutral_sents))]
results = [classifier.classify(s) for s in sentence_vector]
print 'Dictionary : ', dictionary.get_name(), '\n'
print ConfusionMatrix(gold_standard,results).pp()
print 'Accuracy: ', accuracy(gold_standard,results)
for c in [0,1,-1]:
print 'Metrics for class ', c
gold = set()
test = set()
for i,x in enumerate(gold_standard):
if x == c:
gold.add(i)
for i,x in enumerate(results):
if x == c:
test.add(i)
print 'Precision: ', precision(gold, test)
print 'Recall : ', recall(gold, test)
print 'F_measure: ', f_measure(gold, test)
print '\n\n'
#################### Polar sentence classification ##########################
print '#########################################################################'
print '################### Polar Sentences classification ######################'
print '#########################################################################'
dictionaries = [liwc,oplexicon,sentilex]
for dictionary in dictionaries:
classifier = Classifier(dictionary)
sentence_vector = negative_sents + positive_sents
gold_standard = [-1 for i in range(len(negative_sents))] + [1 for i in range(len(positive_sents))]
results = [classifier.classify(s) for s in sentence_vector]
print 'Dictionary : ', dictionary.get_name(), '\n'
print ConfusionMatrix(gold_standard,results).pp()
print 'Accuracy: ', accuracy(gold_standard,results)
for c in [0,1,-1]:
print 'Metrics for class ', c
gold = set()
test = set()
for i,x in enumerate(gold_standard):
if x == c:
gold.add(i)
for i,x in enumerate(results):
if x == c:
test.add(i)
print 'Precision: ', precision(gold, test)
print 'Recall : ', recall(gold, test)
print 'F_measure: ', f_measure(gold, test)
print '\n\n'