-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest.py
273 lines (229 loc) · 10.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# test.py
# main testing script
import os
import json
import argparse
import torch
from torch import nn
from torch.utils.data import DataLoader
from nuscenes.nuscenes import NuScenes
from data import nuScenesDataset, CollateFn
import matplotlib.pyplot as plt
import numpy as np
from skimage.draw import polygon
def make_data_loader(cfg, args):
if "train_on_all_sweeps" not in cfg:
train_on_all_sweeps = False
else:
train_on_all_sweeps = cfg["train_on_all_sweeps"]
dataset_kwargs = {
"n_input": cfg["n_input"],
"n_samples": args.n_samples,
"n_output": cfg["n_output"],
"train_on_all_sweeps": train_on_all_sweeps
}
data_loader_kwargs = {
"pin_memory": False, # NOTE
"shuffle": True,
"batch_size": args.batch_size,
"num_workers": args.num_workers
}
nusc = NuScenes(cfg["nusc_version"], cfg["nusc_root"])
data_loader = DataLoader(nuScenesDataset(nusc, args.test_split, dataset_kwargs),
collate_fn=CollateFn, **data_loader_kwargs)
return data_loader
def mkdir_if_not_exists(d):
if not os.path.exists(d):
print(f"creating directory {d}")
os.makedirs(d)
def evaluate_box_coll(obj_boxes, trajectory, pc_range):
xmin, ymin, _, xmax, ymax, _ = pc_range
T, H, W = obj_boxes.shape
collisions = np.full(T, False)
for t in range(T):
x, y, theta = trajectory[t]
corners = np.array([
(-0.8, -1.5, 1), # back left corner
(0.8, -1.5, 1), # back right corner
(0.8, 2.5, 1), # front right corner
(-0.8, 2.5, 1), # front left corner
])
tf = np.array([
[np.cos(theta), -np.sin(theta), x],
[np.sin(theta), np.cos(theta), y],
[0, 0, 1],
])
xx, yy = tf.dot(corners.T)[:2]
yi = np.round((yy - ymin) / (ymax - ymin) * H).astype(int)
xi = np.round((xx - xmin) / (xmax - xmin) * W).astype(int)
rr, cc = polygon(yi, xi)
I = np.logical_and(
np.logical_and(rr >= 0, rr < H),
np.logical_and(cc >= 0, cc < W),
)
collisions[t] = np.any(obj_boxes[t, rr[I], cc[I]])
return collisions
def voxelize_point_cloud(points):
valid = (points[:, -1] == 0)
x, y, z, t = points[valid].T
x = ((x + 40.0) / 0.2).astype(int)
y = ((y + 70.4) / 0.2).astype(int)
mask = np.logical_and(
np.logical_and(0 <= x, x < 400),
np.logical_and(0 <= y, y < 704)
)
voxel_map = np.zeros((704, 400), dtype=bool)
voxel_map[y[mask], x[mask]] = True
return voxel_map
def make_cost_fig(cost_maps):
cost_imgs = np.ones_like(cost_maps)
T = len(cost_maps)
for t in range(T):
cost_map = cost_maps[t]
cost_min, cost_max = cost_map.min(), cost_map.max()
cost_img = (cost_map - cost_min) / (cost_max - cost_min)
cost_imgs[t] = cost_img
return cost_imgs
def test(args):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device_count = torch.cuda.device_count()
if args.batch_size % device_count != 0:
raise RuntimeError(f"Batch size ({args.batch_size}) cannot be divided by device count ({device_count})")
model_dir = args.model_dir
with open(f"{model_dir}/config.json", 'r') as f:
cfg = json.load(f)
# dataset
data_loader = make_data_loader(cfg, args)
# instantiate a model and a renderer
_n_input, _n_output = cfg["n_input"], cfg["n_output"]
_pc_range, _voxel_size = cfg["pc_range"], cfg["voxel_size"]
model_type = cfg["model_type"]
if model_type == "vanilla":
from model import VanillaNeuralMotionPlanner
model = VanillaNeuralMotionPlanner(_n_input, _n_output, _pc_range, _voxel_size)
elif model_type == "vf_guided":
from model import VFGuidedNeuralMotionPlanner
model = VFGuidedNeuralMotionPlanner(_n_input, _n_output, _pc_range, _voxel_size)
elif model_type == "obj_guided":
from model import ObjGuidedNeuralMotionPlanner
model = ObjGuidedNeuralMotionPlanner(_n_input, _n_output, _pc_range, _voxel_size)
elif model_type == "obj_shadow_guided":
from model import ObjShadowGuidedNeuralMotionPlanner
model = ObjShadowGuidedNeuralMotionPlanner(_n_input, _n_output, _pc_range, _voxel_size)
else:
raise NotImplementedError(f"{model_type} not implemented yet.")
model = model.to(device)
# resume
ckpt_path = f"{args.model_dir}/ckpts/model_epoch_{args.test_epoch}.pth"
checkpoint = torch.load(ckpt_path, map_location=device)
# NOTE: ignore renderer's parameters
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
# data parallel
model = nn.DataParallel(model)
model.eval()
# output
vis_dir = os.path.join(model_dir, "visuals", f"{args.test_split}_epoch_{args.test_epoch}")
mkdir_if_not_exists(vis_dir)
#
counts = np.zeros(cfg["n_output"], dtype=int)
l2_dist_sum = np.zeros(cfg["n_output"], dtype=float)
obj_coll_sum = np.zeros(cfg["n_output"], dtype=int)
obj_box_coll_sum = np.zeros(cfg["n_output"], dtype=int)
#
obj_box_dir = f"{cfg['nusc_root']}/obj_boxes/{cfg['nusc_version']}"
#
np.set_printoptions(suppress=True, precision=2)
num_batch = len(data_loader)
for i, batch in enumerate(data_loader):
sample_data_tokens = batch["sample_data_tokens"]
bs = len(sample_data_tokens)
if bs < device_count:
print(f"Dropping the last batch of size {bs}")
continue
with torch.set_grad_enabled(False):
results = model(batch, "test")
best_plans = results["best_plans"].detach().cpu().numpy()
sampled_plans = batch["sampled_trajectories"].detach().cpu().numpy()
gt_plans = batch["gt_trajectories"].detach().cpu().numpy()
plot_on = args.plot_on and (i % args.plot_every == 0)
cache_on = args.cache_on and (i % args.cache_every == 0)
if (cache_on or plot_on) and "cost" in results:
costs = results["cost"].detach().cpu().numpy()
else:
costs = None
for j, sample_data_token in enumerate(sample_data_tokens):
# visualization:
# - highlight the low cost regions (sub-zero)
# - distinguish cost maps from different timestamps
if plot_on:
# tt = [2, 4, 6]
tt = list(range(_n_output))
if costs is not None:
cost = np.concatenate(costs[j, tt], axis=-1)
plt.imsave(f"{vis_dir}/{sample_data_token}.png", cost[::-1])
# rasterized collision ground truth
obj_box_path = f"{obj_box_dir}/{sample_data_token}.bin"
obj_boxes = np.fromfile(obj_box_path, dtype=bool).reshape((-1, 704, 400))
# T tells us how many future frames we have expert data for
T = len(obj_boxes)
counts[:T] += 1
# skip when gt plan is flawed (because of the limits of BEV planning)
gt_plan = gt_plans[j]
gt_box_coll = evaluate_box_coll(obj_boxes, gt_plan, _pc_range)
# compute L2 distance
# best_plan = best_plans[j, 0]
output_plan = sampled_plans[j, best_plans[j, 0]]
l2_dist = np.sqrt(((output_plan[:, :2] - gt_plan[:, :2])**2).sum(axis=-1))
l2_dist_sum[:T] += l2_dist[:T]
# test ego-vehicle point against annotated object boxes
ti = np.arange(T)
yi = ((output_plan[:T, 1] - _pc_range[1]) / _voxel_size).astype(int)
xi = ((output_plan[:T, 0] - _pc_range[0]) / _voxel_size).astype(int)
# when the best plan is outside the boundary
m1 = np.logical_and(
np.logical_and(_pc_range[1] <= output_plan[:T, 1], output_plan[:T, 1] < _pc_range[4]),
np.logical_and(_pc_range[0] <= output_plan[:T, 0], output_plan[:T, 0] < _pc_range[3])
)
# exclude cases where even the expert trajectory collides (box)
# obviously the expert did not crash
# it is only so because we are considering bird's-eye view
# e.g. when a person is stepping out of the ego vehicle
m1 = np.logical_and(m1, np.logical_not(gt_box_coll[ti]))
obj_coll_sum[ti[m1]] += obj_boxes[ti[m1], yi[m1], xi[m1]].astype(int)
# test ego-vehicle box against annotated object boxes
# exclude cases where the expert trajectory collides (box)
m2 = np.logical_not(gt_box_coll[ti])
box_coll = evaluate_box_coll(obj_boxes, output_plan, _pc_range)
obj_box_coll_sum[ti[m2]] += (box_coll[ti[m2]]).astype(int)
print(f"{args.test_split} Epoch-{args.test_epoch},",
f"Batch: {i+1}/{num_batch},",
f"L2: {l2_dist_sum / counts},",
f"Pt: {obj_coll_sum / counts * 100},",
f"Box: {obj_box_coll_sum / counts * 100}")
res_dir = f"{model_dir}/results"
if not os.path.exists(res_dir):
os.makedirs(res_dir)
res_file = f"{res_dir}/{args.test_split}_epoch_{args.test_epoch}.txt"
with open(res_file, "w") as f:
f.write(f"Split: {args.test_split}\n")
f.write(f"Epoch: {args.test_epoch}\n")
f.write(f"Counts: {counts}\n")
f.write(f"L2 distances: {l2_dist_sum / counts}\n")
f.write(f"Point collision rates: {obj_coll_sum / counts * 100}\n")
f.write(f"Box collision rates: {obj_box_coll_sum / counts * 100}\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-dir", type=str, required=True)
parser.add_argument("--test-split", type=str, required=True)
parser.add_argument("--test-epoch", type=int, default=5)
parser.add_argument("--n-samples", type=int, default=2000)
parser.add_argument("--batch-size", type=int, default=36)
parser.add_argument("--cache-on", action="store_true")
parser.add_argument("--cache-every", type=int, default=1)
parser.add_argument("--plot-on", action="store_true")
parser.add_argument("--plot-every", type=int, default=1)
parser.add_argument("--num-workers", type=int, default=18)
args = parser.parse_args()
np.random.seed(0)
torch.random.manual_seed(0)
test(args)