|
| 1 | +--- |
| 2 | +title: "PK Examples" |
| 3 | +author: |
| 4 | + - name: Jeff Dickinson |
| 5 | +description: "Explore PK ADaM Examples on Pharmaverse Examples Page" |
| 6 | +date: "2023-12-20" |
| 7 | +# please do not use any non-default categories. |
| 8 | +# You can find the default categories in the repository README.md |
| 9 | +categories: [community, admiral, metacore, metatools, xportr] |
| 10 | +# feel free to change the image |
| 11 | +image: "pharmaverse.png" |
| 12 | +--- |
| 13 | + |
| 14 | +<!--------------- typical setup -----------------> |
| 15 | + |
| 16 | +```{r setup, include=FALSE} |
| 17 | +long_slug <- "2023-12-20_p_k__examples" |
| 18 | +# renv::use(lockfile = "renv.lock") |
| 19 | +``` |
| 20 | + |
| 21 | +<!--------------- post begins here -----------------> |
| 22 | + |
| 23 | +# Pharmaverse PK Examples |
| 24 | + |
| 25 | +A new [pharmaverse examples website](https://pharmaverse.github.io/examples){target="_blank"} has some exciting new features to explore. |
| 26 | + |
| 27 | +One of these is the ability to launch Posit Cloud to explore the example code and make your own modifications. |
| 28 | +This interactive Posit Cloud environment is preconfigured with all required package installations. |
| 29 | +Click here: [Launch Posit Cloud](https://posit.cloud/content/7279124){target="_blank"} to explore the examples code. |
| 30 | + |
| 31 | +This sample code here is based on the Population PK Analysis Data (ADPPK) model which follows the recently released [CDISC Implementation Guide](https://www.cdisc.org/standards/foundational/adam/basic-data-structure-adam-poppk-implementation-guide-v1-0){target="_blank"}. |
| 32 | + |
| 33 | +Population PK models generally make use of nonlinear mixed effects models that require numeric variables. |
| 34 | +The data used in the models will include both dosing and concentration records, relative time variables, and numeric covariate variables. |
| 35 | +For more details see the `{admiral}` [vignette](https://pharmaverse.github.io/admiral/articles/pk_adnca.html){target="_blank"}. |
| 36 | + |
| 37 | +## First Load Packages |
| 38 | + |
| 39 | +First we will load the packages required for our project. |
| 40 | +We will use `{admiral}` for the creation of analysis data. |
| 41 | +`{admiral}` requires `{dplyr}`, `{lubridate}` and `{stringr}`. |
| 42 | +We will use `{metacore}` and `{metatools}` to store and manipulate metadata from our specifications. |
| 43 | +We will use `{xportr}` to perform checks on the final data and export to a transport file. |
| 44 | + |
| 45 | +The source SDTM data will come from the CDISC pilot study data stored in `{pharmaversesdtm}` and the ADaM ADSL data will come from `{pharmaverseadam}`. |
| 46 | + |
| 47 | +```{r echo=TRUE, message=FALSE} |
| 48 | +#| label: Load Packages |
| 49 | +# Load Packages |
| 50 | +library(admiral) |
| 51 | +library(dplyr) |
| 52 | +library(lubridate) |
| 53 | +library(stringr) |
| 54 | +library(metacore) |
| 55 | +library(metatools) |
| 56 | +library(xportr) |
| 57 | +library(readr) |
| 58 | +library(pharmaversesdtm) |
| 59 | +library(pharmaverseadam) |
| 60 | +``` |
| 61 | + |
| 62 | +## Next Load Specifications for Metacore |
| 63 | + |
| 64 | +We have saved our specifications in an Excel file and will load them into `{metacore}` with the `metacore::spec_to_metacore()` function. |
| 65 | + |
| 66 | +```{r echo=TRUE, message=FALSE} |
| 67 | +#| label: Load Specs |
| 68 | +#| warning: false |
| 69 | +# ---- Load Specs for Metacore ---- |
| 70 | +metacore <- spec_to_metacore("pk_spec.xlsx") %>% |
| 71 | + select_dataset("ADPPK") |
| 72 | +``` |
| 73 | + |
| 74 | +## Load Source Datasets |
| 75 | + |
| 76 | +We will load our SDTM data from `{pharmaversesdtm}`. |
| 77 | +The main components of the Population PK will be exposure data from `EX` and pharmacokinetic concentration data from `PC`. |
| 78 | +Here we will use `ADSL` from `{pharmaverseadam}` for baseline characteristics and we will derive additional baselines from vital signs `VS` and laboratory data `LB`. |
| 79 | + |
| 80 | +```{r} |
| 81 | +#| label: Load Source |
| 82 | +# ---- Load source datasets ---- |
| 83 | +# Load PC, EX, VS, LB and ADSL |
| 84 | +data("pc") |
| 85 | +data("ex") |
| 86 | +data("vs") |
| 87 | +data("lb") |
| 88 | +data("adsl") |
| 89 | +
|
| 90 | +ex <- convert_blanks_to_na(ex) |
| 91 | +pc <- convert_blanks_to_na(pc) |
| 92 | +vs <- convert_blanks_to_na(vs) |
| 93 | +lb <- convert_blanks_to_na(lb) |
| 94 | +``` |
| 95 | + |
| 96 | +## Derive Covariates Using `{metatools}` |
| 97 | + |
| 98 | +In this step we will create our numeric covariates using the `metatools::create_var_from_codelist()` function. |
| 99 | + |
| 100 | +```{r} |
| 101 | +#| label: Covariates |
| 102 | +#---- Derive Covariates ---- |
| 103 | +# Include numeric values for STUDYIDN, USUBJIDN, SEXN, RACEN etc. |
| 104 | +
|
| 105 | +covar <- adsl %>% |
| 106 | + create_var_from_codelist(metacore, input_var = STUDYID, out_var = STUDYIDN) %>% |
| 107 | + create_var_from_codelist(metacore, input_var = SEX, out_var = SEXN) %>% |
| 108 | + create_var_from_codelist(metacore, input_var = RACE, out_var = RACEN) %>% |
| 109 | + create_var_from_codelist(metacore, input_var = ETHNIC, out_var = AETHNIC) %>% |
| 110 | + create_var_from_codelist(metacore, input_var = AETHNIC, out_var = AETHNICN) %>% |
| 111 | + create_var_from_codelist(metacore, input_var = ARMCD, out_var = COHORT) %>% |
| 112 | + create_var_from_codelist(metacore, input_var = ARMCD, out_var = COHORTC) %>% |
| 113 | + create_var_from_codelist(metacore, input_var = COUNTRY, out_var = COUNTRYN) %>% |
| 114 | + create_var_from_codelist(metacore, input_var = COUNTRY, out_var = COUNTRYL) %>% |
| 115 | + mutate( |
| 116 | + STUDYIDN = as.numeric(word(USUBJID, 1, sep = fixed("-"))), |
| 117 | + SITEIDN = as.numeric(word(USUBJID, 2, sep = fixed("-"))), |
| 118 | + USUBJIDN = as.numeric(word(USUBJID, 3, sep = fixed("-"))), |
| 119 | + SUBJIDN = as.numeric(SUBJID), |
| 120 | + ROUTE = unique(ex$EXROUTE), |
| 121 | + FORM = unique(ex$EXDOSFRM), |
| 122 | + REGION1 = COUNTRY, |
| 123 | + REGION1N = COUNTRYN, |
| 124 | + SUBJTYPC = "Volunteer", |
| 125 | + ) %>% |
| 126 | + create_var_from_codelist(metacore, input_var = FORM, out_var = FORMN) %>% |
| 127 | + create_var_from_codelist(metacore, input_var = ROUTE, out_var = ROUTEN) %>% |
| 128 | + create_var_from_codelist(metacore, input_var = SUBJTYPC, out_var = SUBJTYP) |
| 129 | +``` |
| 130 | + |
| 131 | +### Derive Additional Baselines |
| 132 | + |
| 133 | +Next we add additional baselines from vital signs and laboratory data. |
| 134 | +Several common variables are computed using some of the built in functions in `{admiral}`. |
| 135 | + |
| 136 | +```{r} |
| 137 | +#| label: Baselines |
| 138 | +
|
| 139 | +labsbl <- lb %>% |
| 140 | + filter(LBBLFL == "Y" & LBTESTCD %in% c("CREAT", "ALT", "AST", "BILI")) %>% |
| 141 | + mutate(LBTESTCDB = paste0(LBTESTCD, "BL")) %>% |
| 142 | + select(STUDYID, USUBJID, LBTESTCDB, LBSTRESN) |
| 143 | +
|
| 144 | +covar_vslb <- covar %>% |
| 145 | + derive_vars_merged( |
| 146 | + dataset_add = vs, |
| 147 | + filter_add = VSTESTCD == "HEIGHT", |
| 148 | + by_vars = exprs(STUDYID, USUBJID), |
| 149 | + new_vars = exprs(HTBL = VSSTRESN) |
| 150 | + ) %>% |
| 151 | + derive_vars_merged( |
| 152 | + dataset_add = vs, |
| 153 | + filter_add = VSTESTCD == "WEIGHT" & VSBLFL == "Y", |
| 154 | + by_vars = exprs(STUDYID, USUBJID), |
| 155 | + new_vars = exprs(WTBL = VSSTRESN) |
| 156 | + ) %>% |
| 157 | + derive_vars_transposed( |
| 158 | + dataset_merge = labsbl, |
| 159 | + by_vars = exprs(STUDYID, USUBJID), |
| 160 | + key_var = LBTESTCDB, |
| 161 | + value_var = LBSTRESN |
| 162 | + ) %>% |
| 163 | + mutate( |
| 164 | + BMIBL = compute_bmi(height = HTBL, weight = WTBL), |
| 165 | + BSABL = compute_bsa( |
| 166 | + height = HTBL, |
| 167 | + weight = HTBL, |
| 168 | + method = "Mosteller" |
| 169 | + ), |
| 170 | + CRCLBL = compute_egfr( |
| 171 | + creat = CREATBL, creatu = "SI", age = AGE, weight = WTBL, sex = SEX, |
| 172 | + method = "CRCL" |
| 173 | + ), |
| 174 | + EGFRBL = compute_egfr( |
| 175 | + creat = CREATBL, creatu = "SI", age = AGE, weight = WTBL, sex = SEX, |
| 176 | + method = "CKD-EPI" |
| 177 | + ) |
| 178 | + ) %>% |
| 179 | + rename(TBILBL = BILIBL) |
| 180 | +``` |
| 181 | + |
| 182 | +This covariate section of the code will be combined with the dosing and observation records from `EX` and `PC`. |
| 183 | + |
| 184 | +The rest of the code can be seen on the [pharmaverse examples website](https://pharmaverse.github.io/examples){target="_blank"} or in the [Posit Cloud environment](https://posit.cloud/content/7279124){target="_blank"}. |
| 185 | + |
| 186 | +Happy exploring! |
| 187 | + |
| 188 | +<!--------------- appendices go here -----------------> |
| 189 | + |
| 190 | +```{r, echo=FALSE} |
| 191 | +source("appendix.R") |
| 192 | +insert_appendix( |
| 193 | + repo_spec = "pharmaverse/blog", |
| 194 | + name = long_slug |
| 195 | +) |
| 196 | +``` |
0 commit comments