-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfda-table_35.R
208 lines (192 loc) · 6.66 KB
/
fda-table_35.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#' Table 35. Patients With Adverse Events by System Organ Class,
#' Safety Population, Pooled Analysis (or Trial X)
#'
#' @details
#' * `df` must contain the variables specified by
#' `arm_var`, `id_var`, `soc_var` and `saffl_var`.
#' * `return_ard` set to `TRUE` (default) or `FALSE`; whether the intermediate ARD object should be returned.
#'
#' @inheritParams argument_convention
#' @param soc_var (`character`)\cr Name of the variable that contains the SOC to describe.
#'
#' @return A `gtsummary` table and, if `return_ard = TRUE`, an ARD.
#' If `return_ard = TRUE`, they will be returned as a list with named elements `table` and `ard`.
#'
#' @seealso [`tbl_make_table_35`]
#'
#' @examples
#' adsl <- random.cdisc.data::cadsl
#' adae <- random.cdisc.data::cadae
#'
#' tbl <- make_table_35(df = adae, denominator = adsl)
#' tbl
#'
#' @export
make_table_35 <- function(df,
denominator = NULL,
return_ard = TRUE,
id_var = "USUBJID",
arm_var = "ARM",
saffl_var = "SAFFL",
soc_var = "AEBODSYS",
lbl_overall = NULL,
na_level = "<Missing>") {
tbl <- make_table_35_gtsummary(
df = df,
denominator = denominator,
id_var = id_var,
arm_var = arm_var,
saffl_var = saffl_var,
soc_var = soc_var,
lbl_overall = lbl_overall,
na_level = na_level
)
if (return_ard) {
ard <- gather_ard(tbl)
return(list(table = tbl, ard = ard))
} else {
return(tbl) # nocov
}
}
#' Pre-Process Data for Table 35 Creation
#'
#' @keywords internal
preproc_df_table_35 <- function(df,
id_var = "USUBJID",
arm_var = "ARM",
saffl_var = "SAFFL",
soc_var = "AEBODSYS",
na_level = "<Missing>") {
assert_subset(c(soc_var, arm_var, id_var, saffl_var), names(df))
assert_flag_variables(df, saffl_var)
df <- df |>
filter(.data[[saffl_var]] == "Y") |>
arrange(soc_var) |>
df_explicit_na(na_level = na_level)
df
}
#' Engine-Specific Functions: Table 35
#'
#' The table engine used by each engine-specific function is identified by its suffix.
#'
#' @inheritParams argument_convention
#'
#' @details
#' * `df` must contain the variables the variables specified by
#' `arm_var`, `id_var`, `saffl_var`, and `soc_var`.
#' * If specified, `denominator` (or `alt_counts_df`) must contain `USUBJID` and the variables specified by `arm_var`
#' and `saffl_var`.
#' * Flag variables (i.e. `XXXFL`) are expected to have two levels: `"Y"` (true) and `"N"` (false). Missing values in
#' flag variables are treated as `"N"`.
#' * Numbers in table represent the absolute numbers of patients and fraction of `N`.
#' * All-zero rows are removed by default by `make_table_35_rtables()` (see `prune_0` argument).
#'
#' @return
#' * `make_table_35_gtsummary()` returns a `gtsummary` object.
#' * `make_table_35_rtables()` returns an `rtable` object.
#'
#' @seealso [make_table_35()]
#'
#' @examples
#'
#' adsl <- random.cdisc.data::cadsl
#' adae <- random.cdisc.data::cadae
#'
#' # gtsummary table --------------
#' tbl_gtsummary <- make_table_35_gtsummary(df = adae, denominator = adsl)
#' tbl_gtsummary
#'
#' # rtables table ----------------
#' tbl_rtables <- make_table_35_rtables(df = adae, alt_counts_df = adsl)
#' tbl_rtables
#'
#' @export
#' @name tbl_make_table_35
make_table_35_gtsummary <- function(df,
denominator = NULL,
id_var = "USUBJID",
arm_var = "ARM",
saffl_var = "SAFFL",
soc_var = "AEBODSYS",
lbl_overall = NULL,
na_level = "<Missing>") {
df <- preproc_df_table_35(df, id_var, arm_var, saffl_var, soc_var, na_level)
if (is.null(denominator)) {
denominator <- df # nocov
} else {
denominator <- alt_counts_df_preproc(
denominator,
id_var,
arm_var,
saffl_var
)
}
tbl_gts <- tbl_hierarchical(
data = df,
variables = soc_var,
by = arm_var,
denominator = denominator,
id = id_var
) |>
modify_header(label ~ paste0("**System Organ Class**")) |>
modify_header(all_stat_cols() ~ "**{level}** \nN = {n}") |>
modify_column_alignment(columns = all_stat_cols(), align = "right")
if (!is.null(lbl_overall)) {
tbl_gts_ovrl <- tbl_hierarchical(
data = df,
variables = soc_var,
denominator = denominator,
id = id_var
) |>
modify_header(label ~ paste0("**System Organ Class**")) |>
modify_header(
all_stat_cols() ~ paste0("**", lbl_overall, "** \nN = {n}")
) |>
modify_column_alignment(columns = all_stat_cols(), align = "right")
tbl_merged <- tbl_merge(list(tbl_gts, tbl_gts_ovrl), tab_spanner = FALSE)
tbl <- gtsummary::with_gtsummary_theme(
x = gtsummary::theme_gtsummary_compact(),
expr = tbl_merged
)
} else {
tbl <- with_gtsummary_theme(
x = theme_gtsummary_compact(),
expr = tbl_gts
)
}
return(tbl)
}
#' @export
#' @rdname tbl_make_table_35
make_table_35_rtables <- function(df,
alt_counts_df = NULL,
show_colcounts = TRUE,
id_var = "USUBJID",
arm_var = "ARM",
saffl_var = "SAFFL",
soc_var = "AEBODSYS",
lbl_soc_var = formatters::var_labels(df, fill = TRUE)[soc_var],
lbl_overall = NULL,
risk_diff = NULL,
prune_0 = FALSE,
na_level = "<Missing>",
annotations = NULL) {
df <- preproc_df_table_35(df, id_var, arm_var, saffl_var, soc_var, na_level)
alt_counts_df <-
alt_counts_df_preproc(alt_counts_df, id_var, arm_var, saffl_var)
lyt <- basic_table_annot(show_colcounts, annotations) |>
split_cols_by_arm(arm_var, lbl_overall, risk_diff) |>
count_occurrences(
vars = soc_var,
drop = FALSE,
riskdiff = !is.null(risk_diff)
) |>
append_topleft(c("", lbl_soc_var))
tbl <- build_table(lyt, df = df, alt_counts_df = alt_counts_df) |>
sort_at_path(
path = c(soc_var),
scorefun = score_occurrences_cols(col_names = levels(df[[arm_var]]))
)
if (prune_0) tbl <- prune_table(tbl)
tbl
}