-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwsi_utils.py
executable file
·244 lines (195 loc) · 6.99 KB
/
wsi_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
""" Generates labels of Ki-67 positive regions
options:
1) Probablity map
2) Binary mask
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
from mpl_toolkits.mplot3d.axes3d import Axes3D #--- For 3D plot
import cv2 as cv
from cv2 import ximgproc
import os,glob
import argparse
import shutil as shu
from skimage.color import rgb2hed, hed2rgb,separate_stains, combine_stains
from skimage import data
from skimage.exposure import rescale_intensity
from pathlib import Path
def reject_outliers(data, m=3):
dt = data.copy()
dt[(abs(data - np.mean(data)) > m * np.std(data))] = np.mean(data)
return dt
def in_range(d):
return (0, np.max(cv.GaussianBlur(d.copy(), (3, 3), 0)))
def flip8(imname):
imSrc = cv.imread(imname)
for kr in range(4):
for pr in range(2):
if kr+pr == 0:
continue
im = imSrc
for k in range(kr):
im = cv.rotate(im, cv.ROTATE_90_CLOCKWISE)
if pr != 0:
im = cv.flip(im, flipCode=1)
# plt.imshow(im)
# plt.title("r%dp%d"%(kr*90, pr))
# plt.show()
cv.imwrite(imname[:-4] + "[r%dp%d].tif" % (kr*90, pr), im)
return 0
def norm_by_row(M):
"""normalize the rows of a matrix
Args:
M ([ndarry]): [---]
Returns:
[type]: [description]
"""
for k in range(M.shape[1]):
M[k, :] /= np.sqrt(np.sum(np.power(M[k, :], 2)))
return M
def showbychan(im_ihc):
"""show the stains' intensities of a deconvoluted image
Args:
im_ihc ([ndarry]): [I am tired]
"""
for k in range(3):
plt.figure()
plt.imshow(im_ihc[:, :, k], cmap="gray")
def rgbdeconv(rgb, conv_matrix, C=0):
"""yield the H-R-D stain from RGB input
Args:
rgb ([numpy matrix]): input 3-channel RGB image tile
conv_matrix ([ndarray]): [OD matrix 3x3]
C (int, optional): constant in the log transform. Defaults to 0.
Returns:
[ndarray]: [H-R-D stain from RGB input]
"""
rgb = rgb.copy().astype(float)
rgb += C
stains = np.reshape(-np.log10(rgb), (-1, 3)) @ conv_matrix
return np.reshape(stains, rgb.shape)
def hecconv(stains, conv_matrix, C=0):
# from skimage.exposure import rescale_intensity
stains = stains.astype(float)
logrgb2 = -np.reshape(stains, (-1, 3)) @ conv_matrix
rgb2 = np.power(10, logrgb2)
return np.reshape(rgb2 - C, stains.shape)
def surf(matIn, name="fig", div=(50, 50), SIZE=(8, 6)):
"""custom surface plot function
Args:
matIn ([numpy matrix]): 2-D data to plot
name (str, optional): [name of the plot]. Defaults to "fig".
div (tuple, optional): [resolution of the plot grid]. Defaults to (50, 50).
SIZE (tuple, optional): [size of the plot]. Defaults to (8, 6).
"""
x = np.arange(0, matIn.shape[0])
y = np.arange(0, matIn.shape[1])
x, y = np.meshgrid(y, x)
fig = plt.figure(figsize=SIZE)
ax = Axes3D(fig)
ax.plot_surface(x, y, matIn, rstride=div[0], cstride=div[1], cmap='jet')
plt.title(name)
plt.show()
def gfLabel(img_r, mode=-1, hard_thresh=0.5, geps=1000, grad=5,
MOP_SIZE=3, MCL_SIZE=3, MORPH_ITER=2):
"""Creates binary label from input tile
Args:
img_r ([type]): [description]
mode (int, optional): [description]. Defaults to -1.
hard_thresh (float, optional): [description]. Defaults to 0.5.
geps (int, optional): [description]. Defaults to 1000.
grad (int, optional): [description]. Defaults to 5.
MOP_SIZE (int, optional): [description]. Defaults to 3.
MCL_SIZE (int, optional): [description]. Defaults to 3.
MORPH_ITER (int, optional): [description]. Defaults to 2.
"""
img_r = rescale_intensity(img_r, in_range=in_range(img_r))
d1 = img_r
d2 = (d1*255).astype(uint8)
d2 = cv.morphologyEx(d2, op=cv.MORPH_OPEN, kernel=np.ones(
(MOP_SIZE, MOP_SIZE), uint8), iterations=MORPH_ITER)
# d2 = cv.morphologyEx(d2, op=cv.MORPH_CLOSE, kernel=np.ones((MCL_SIZE, MCL_SIZE), uint8), iterations=MORPH_ITER)
guidedDAB = ximgproc.guidedFilter(
guide=d2, src=d2, radius=grad, eps=geps, dDepth=-1)
if mode == -1:
d1 *= (guidedDAB < (hard_thresh*255))
# _, _d1 = cv.threshold(guidedDAB,25,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
# d1 = (guidedDAB/255)*(_d1/255)
d2 = (d1*255).astype(uint8)
else:
d1 *= (guidedDAB > (hard_thresh*255))
d2 = (d1*255).astype(uint8)
guide = d2
guidedDAB = ximgproc.guidedFilter(
guide=guide, src=d2, radius=grad, eps=geps, dDepth=-1)
_, guidedDAB = cv.threshold((guidedDAB).astype(
uint8), 0, 255, cv.THRESH_BINARY+cv.THRESH_OTSU)
guidedDAB = ((guidedDAB) > 0).astype(uint8)
plt.figure(figsize=(20, 10))
plt.subplot(121)
plt.imshow(guidedDAB, cmap="gray")
plt.axis('off')
return guidedDAB
def buildTree(phys_path, label_path="Prob"):
"""[summary]
Copy dir struct of Tiles
Tiles
Blood
Tumor
...
==>
Probs
Blood
Tumor
...
"""
def ig_f(dir, files):
return [f for f in files if (os.path.isfile(os.path.join(dir, f)) and (not (".txt" in os.path.join(dir, f))))]
if not os.path.exists(phys_path):
shu.copytree(phys_path, label_path, ignore=ig_f)
""" get a list of last subdiretories in tiles. e.g. subdirs = [blood, tumor...]
and a string that gives the absolute path of corresponding origin directory,
e.g. basedir="./Kimura/DATA/Tiles"
target_dir = "./Kimura/DATA/Probs"
for subsir in subdirs:
# get a image list
l_images = scandir(basedir + "/" + subsir)
for image in l_images:
imread(image)
# process image
.... some process
# copy image to label directory
???.cp(image, target_dir + "/") # 如果要改文件名,在此前替换。如IHC_(1,2).tif ==> Mask_(1,2).tif
"""
"""
TILES
└── HE
├── 01_14-3768_Ki67_HE
│ ├── Annotations
│ │ └── annotations-01_14-3768_Ki67_HE.txt
│ └── Tiles
│ ├── Healthy Tissue [519 entries exceeds filelimit, not opening dir]
│ └── Tumor [1662 entries exceeds filelimit, not opening dir]
IHC
└── 01_14-3768_Ki67_IHC
├── Annotations
│ └── annotations-01_14-3768_Ki67_IHC.txt
└── Tiles
├── Healthy Tissue [519 entries exceeds filelimit, not opening dir]
└── Tumor [1662 entries exceeds filelimit, not opening dir]
"""
def parse_args():
"""parse input arguments
"""
return
def main():
"""main entry of script.
"""
return
if __name__ == "__main__":
"""waibiwabi
waibibabo
rugudmalaysia
"""
main()