-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataOperations.py
526 lines (381 loc) · 13.7 KB
/
dataOperations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#!/usr/bin/env python
import epygram
import numpy as np
import copy
#import warnings
#warnings.filterwarnings("ignore",category=np.VisibleDeprecationWarning)
#epygram.init_env()
########################################################
# Functions
#
def file_name(path,exp,date,time,memb):
# Construct the file path
#
fname=path+"/"+exp+"_"+date+"_00"+time+"_00"+memb
return fname
########################################################
def load_data(fname,level,par):
# Load data with epygram and read the desired field in
#
if level > 0:
parname="S0"+str(level)+par
else:
parname=par
# Overwrite for SPP pattern (stored differently),
# and for surface fields
if par=="SPP_PATTERN1":
parname="S001SPP_PATTERN"
elif par=="SPP_PATTERN2":
parname="S002SPP_PATTERN"
elif par=='SURFINSPLUIE' or par=='SURFINSNEIGE' or par=='SURFINSGRAUPEL':
parname=par
elif par=='SURFNEBUL.TOTALE':
parname=par
r=epygram.formats.resource(fname,'r')
data=r.readfield(parname)
return data
########################################################
def loadAllData(path,exp,date,t,members,level,pars,fixNegData,hardMaskId):
# Load all model data in to memory
# Init an np array to contain all the data
#data=np.empty((len(exp),len(members),len(pars),len(level)),dtype=object)
data=np.empty((len(exp),len(members),len(pars)),dtype=object)
iexp=0
for expi in exp:
imemb=0
for memb in members:
# Construct filename for exp and member
if memb==0:
fname=file_name(path,"control",date,t,str(memb))
else:
fname=file_name(path,expi,date,t,str(memb))
ipar=0
for par in pars:
#ilev=0
#for lev in levels:
d=load_data(fname,level,par)
# There are negative data values in someplaces for some reason
# fix this
if fixNegData:
d.data[d.data<0]=0.
#print(d.data<0)
if hardMaskId:
if hardMaskId=="Fin":
# Finnish South + Baltic
d.data[0:961,740:751]=0.
d.data[0:961,0:400]=0.
d.data[0:190,:]=0.
d.data[610:961,:]=0.
elif hardMaskId=="Nor":
# Norwegian South + North Sea
d.data[0:961,500:751]=0.
d.data[700:961,:]=0.
elif hardMaskId=="Gavle":
d.data[0:961,740:751]=0.
d.data[0:961,0:400]=0.
d.data[0:290,:]=0.
d.data[610:961,:]=0.
# Load data in per variable and level
#data[iexp,imemb,ipar,ilev]=d
data[iexp,imemb,ipar]=d
# ilev+=1
ipar+=1
imemb+=1
iexp+=1
return data
########################################################
def main_data(path,exp,date,t,members,level,pars,plottype,scalesMatched,fixNegData,areaMask):
# Load in all data
data=loadAllData(path,exp,date,t,members,level,pars,fixNegData,areaMask)
# Clean out not used dimensions frm the data matrix
if plottype!="multiExpDiff" and plottype!="multiExpStd" and plottype!="multiExpDiffStd":
data=reduceData(data,dim=(1,2))
dextra=[]
if plottype=="multiMember":
if scalesMatched:
dextra=getMax(data,dim=0)
elif plottype=="multiMemberDiff":
data=dhDiff(data,False)
if scalesMatched:
dextra=getStats(data)[1:3]
elif plottype=="multiMemberDiff2":
data=dhDiff2(data,False)
if scalesMatched:
dextra=getStats(data)[1:3]
elif plottype=="multiMemberStd" or plottype=="multiMemberStdMasked":
data=dhStd(data,False)
elif plottype=="multiExpDiffStd":
data=expDiffStd(data)
if scalesMatched:
dextra=[]
dextra.append(getStats(data[1:-1:2,:],excludeCtrl=0)[1:3])
dextra.append(getStats(data[2:-1:2,:],excludeCtrl=0)[1:3])
elif plottype=="multiExpDiff":
data=expDiff(data)
if scalesMatched:
dextra=getStats(data[1:-1:1,:],excludeCtrl=0)[1:3]
elif plottype=="multiExpStd":
data=expStd(data)
if scalesMatched:
dextra=getStats(data)[1:3]
return data,dextra
########################################################
class MinValue:
def __init__(self):
self.min_value=float("inf")
def __call__(self,new_value):
if new_value < self.min_value:
self.min_value=new_value
return self.min_value
########################################################
def reduceData(data,dim=(0,1)):
# Clean out 1-size dimensions
# Get dim of data
allDim=data.shape
# Reduce data matrix to dim-shape
data=np.reshape(data,(allDim[dim[0]],allDim[dim[1]]))
return data
########################################################
def getMax(data,dim=0):
# Create a min value vector keeping track of each variable/level
# smallest max values
dataMin=[]
# Depending on the choice, unroll data structure differently
if dim==0:
for j in range(0,data.shape[1]):
# Initialize
n=MinValue()
for i in range(0,data.shape[0]):
dd=n(data[i,j].max())
dataMin.append(dd)
else:
for i in range(0,data.shape[1]):
# Initialize
n=MinValue()
for j in range(0,data.shape[0]):
dd=n(data[i,j].max())
dataMin.append(dd)
return dataMin
########################################################
def getStats(data,excludeCtrl=1):
# Get max, min and mean from the data to be displayed later on
dataStats=np.empty((data.shape[0],data.shape[1],3),dtype=object)
sMax=[]
lMin=[]
for j in range(0,data.shape[1]):
smallestMax=np.inf
largestMin=-np.inf
#n=MinValue()
for i in range(excludeCtrl,data.shape[0]):
dataStats[i,j,0]=data[i,j].max()
dataStats[i,j,1]=data[i,j].min()
dataStats[i,j,2]=data[i,j].mean()
smallestMax=min(smallestMax,dataStats[i,j,0])
largestMin=max(largestMin,dataStats[i,j,1])
sMax.append(smallestMax)
lMin.append(largestMin)
return dataStats,sMax,lMin
########################################################
def stdvFromData(data):
mean=[]
sdev=[]
for i in range(0,data.shape[1]):
# Mean
dd=copy.deepcopy(data[0,i])
dd.data-=data[0,i].data
for j in range(1,data.shape[0]):
dd.data += data[j,i].data
dd.data=dd.data/float(j)
mean.append(dd)
# SDEV
sdd=copy.deepcopy(data[0,i])
sdd.data-=data[0,i].data
for j in range(1,data.shape[0]):
sdd.data += (data[j,i].data - dd.data)**2
sdd.data=sdd.data/float(j)
sdd.data=sdd.data**(0.5)
sdev.append(sdd)
return mean,sdev
########################################################
def expDiffStd(data):
# Calc mean and sdev for each experiment
ddd=np.empty((1+data.shape[0]*2,data.shape[2]),dtype='object')
iddd=0
# Cycle over exps and create a single data structure containing
# all the data
for i in range(0,data.shape[0]):
dd=data[i,:,:]
dd=dhStd(dd,False)
if i==0:
ctrl=0
else:
ctrl=1
for j in range(ctrl,3):
ddd[iddd,:]=dd[j,:]
iddd+=1
return(ddd)
########################################################
def expDiff(data):
# Calc mean for each experiment
ddd=np.empty((1+data.shape[0],data.shape[2]),dtype='object')
iddd=0
# Cycle over exps and create a single data structure containing
# all the data
for i in range(0,data.shape[0]):
dd=data[i,:,:]
dd=dhStd(dd,False)
if i==0:
ctrl=0
else:
ctrl=1
for j in range(ctrl,2):
ddd[iddd,:]=dd[j,:]
iddd+=1
return(ddd)
########################################################
def expStd(data):
# Calc mean for each experiment
ddd=np.empty((1+data.shape[0],data.shape[2]),dtype='object')
iddd=0
# Cycle over exps
for i in range(0,data.shape[0]):
dd=data[i,:,:]
dd=dhStd(dd,False)
if i==0:
exps=[0,2]
else:
exps=[2]
for j in exps:
ddd[iddd,:]=dd[j,:]
iddd+=1
return(ddd)
########################################################
def dhStd(data,masked):
# Data Handling for Std decision tree
mean,sdev=stdvFromData(data)
dd=np.empty((3,data.shape[1]),dtype='object')
for i in range(0,data.shape[1]):
dd[0,i]=data[0,i]
dd[1,i]=mean[i]-data[0,i]
dd[2,i]=sdev[i]
if masked:
ddMasked=onesMask(dd)
plottype=plottype+"Masked"
data=ddMasked
else:
data=dd
return data
########################################################
def dhDiff(data,masked):
# Data Handling for Diff decision tree
for i in range(1,data.shape[0]): #1,6
for j in range(0,data.shape[1]):
data[i,j]=data[i,j]-data[0,j]
if masked:
data[i,j]=levelsMaskDiff(data[i,j])
return data
########################################################
def dhDiff2(data,masked):
# Data Handling for Diff decision tree when SPP patterns
# are requested
# Data format:
# 1st column - field (DO DIFF)
# 2nd column - raw pert pattern (KEEP)
# 3rd column - scaled pert pattern (MODIFY)
for i in range(1,data.shape[0]): #1,6
data[i,0]=data[i,0]-data[0,0]
#data[2,j]=data[2,j]
#data[3,j]=data[3,j]*data[0,j]-data[0,j]
dd=copy.deepcopy(data[i,0])
dd.data-=data[i,0].data
dd.data += data[i,2].data*data[0,0].data-data[0,0].data
data[i,2]=dd
dd=copy.deepcopy(data[i,0])
dd.data-=data[i,0].data
dd.data += data[i,3].data*data[i,0].data-data[0,0].data
data[i,3]=dd
if masked:
data[1,j]=levelsMaskDiff(data[1,j])
data[2,j]=levelsMaskDiff(data[2,j])
data[3,j]=levelsMaskDiff(data[3,j])
return data
def setPredefinedBounds(date,t,pars):
# Predefined list for output field bounds
#
# [value for raw field upper limit, value for field diff]
#
# In case two values are defined for the raw field,
# the 1st element is used as the lower limit for colorscale
#
tempBounds=[]
for par in pars:
table=[]
if par=='SURFACCPLUIE':
base=[10.,1] # kg/m3
table=dict([('2022071512'+'06',[20,4]),
('2022071512'+'12',[30,6]),
('2022071512'+'24',[40,8])])
elif par=='SURFNEBUL.TOTALE':
base=[1.,1.] # 0-1
elif par=='CLSTEMPERATURE':
base=[[263.,283.],1] # K
table=dict([('2022071512'+'06',[[278,303],2]),
('2022071512'+'12',[[278,303],4]),
('2022071512'+'24',[[278,303],8])])
# Overwrite base if table value is found for date+t
if table:
try:
base=table[date+t]
except:
None
tempBounds.append(base)
# Rearrange the list into a format that plot
# understands (could be revisited)
control=[]
diff=[]
for item in tempBounds:
control.append(item[0])
diff.append(item[1])
manualBounds=[control,diff]
return manualBounds
########################################3
# OBSOLETE????
#########################
def onesMask(data):
for i in range(0,data.shape[0]):
for j in range(0,data.shape[1]):
data[i,j].data[data[i,j].data>0.]=1.
data[i,j].data[data[i,j].data<0.]=-1.
return data
def levelsMaskDiff2(data):
for i in range(0,data.shape[0]):
for j in range(0,data.shape[1]):
dmax=data[i,j].max
dmin=data[i,j].min
# Center around zero
dabs=max(dmax,-1*dmin)
print(dmax,dmin,dabs)
data[i,j].data[data[i,j].data > dabs*0.01] =.01
data[i,j].data[data[i,j].data > dabs*0.1] =.1
data[i,j].data[data[i,j].data > dabs*0.5] =.5
data[i,j].data[data[i,j].data > dabs*0.9] =.9
data[i,j].data[data[i,j].data < dabs*-0.01] =-.01
data[i,j].data[data[i,j].data < dabs*-0.1] =-.1
data[i,j].data[data[i,j].data < dabs*-0.5] =-.5
data[i,j].data[data[i,j].data < dabs*-0.9] =-.9
return data
def levelsMaskDiff(data):
dmax=data.max()
dmin=data.min()
# Center around zero
dabs=max([dmax,-1*dmin])
print(dmax,dmin,dabs)
data.data[data.data > dabs*0.01] =.01
data.data[data.data > dabs*0.1] =.1
data.data[data.data > dabs*0.5] =.5
data.data[data.data > dabs*0.9] =.9
data.data[data.data < dabs*-0.01] =-.01
data.data[data.data < dabs*-0.1] =-.1
data.data[data.data < dabs*-0.5] =-.5
data.data[data.data < dabs*-0.9] =-.9
return data