-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_reverse.cpp
131 lines (123 loc) · 3.45 KB
/
test_reverse.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#include <cmath>
#include <fstream>
#include <iostream>
#include "matrix.h"
#include "reverse.h"
// Print and evaluate.
#define PN(a) std::cout << '\n' << (a) << std::endl;
#define PE(a) std::cout << #a << ": " << (a) << std::endl;
#define PEN(a) std::cout << #a << ":\n" << (a) << std::endl;
struct Extra : public BaseExtra {
Extra(std::ostream& out) : dot(out) {}
template <class Node>
void Visit(Node* node) {
dot.Write(node);
}
DotWriter dot;
};
struct ExtraPrint : public BaseExtra {
template <class Node>
void Visit(Node* node) {
std::cout << *node << std::endl;
}
};
template <class T>
static void TestReverse(const T& eye, std::string suff) {
std::cout << '\n' << __func__ << std::endl;
const auto pi = M_PI;
Var var_x(eye * (pi / 8), "x");
Var var_y(eye * (pi / 8), "y");
PE(var_x);
PE(var_y);
auto x = MakeTracer<Extra>(var_x);
auto y = MakeTracer<Extra>(var_y);
auto eval = [&](auto& e, std::string path) {
const auto order = e.GetFowardOrder();
e.UpdateGrad(order);
PE(e.value());
PE(x.grad());
PE(y.grad());
std::cout << path << std::endl;
std::ofstream fout(path);
Extra extra(fout);
Traverse(order, extra);
ClearVisited(order);
};
auto e1 = sum(sin(x) * cos(y) + cos(x) * sin(y));
eval(e1, "reverse_" + suff + "1.gv");
auto e2 = sum(sin(x + y));
eval(e2, "reverse_" + suff + "2.gv");
}
template <class Scal = double>
static void TestMatrix() {
std::cout << '\n' << __func__ << std::endl;
auto Str = [](auto m) { return MatrixToStr(m, 3); };
const auto matr = Matrix<Scal>::iota(5);
Var var_u(Matrix<Scal>::ones_like(matr) * 2, "u");
Var var_x(Scal(5), "x");
auto u = MakeTracer<Extra>(var_u);
auto x = MakeTracer<Extra>(var_x);
auto grad_u = [&](auto e) {
e.UpdateGrad();
return '\n' + Str(u.grad());
};
auto grad_x = [&](auto e) {
e.UpdateGrad();
return x.grad();
};
PEN(Str(matr));
PEN(Str(u.value()));
PE(x.value());
PN("Roll.");
PE(grad_u(sum(u * matr)));
PE(grad_u(sum(roll(u, 1, 2) * matr)));
PN("Element access.");
PE(grad_u(u(1, 2)));
PN("Tracer scalar by constant matrix.");
PE(grad_x(sum(x * matr)));
PE(grad_x(sum(matr * x)));
PN("Tracer scalar by tracer matrix.");
PE(grad_u(sum(x * u)));
PE(grad_x(sum(x * u)));
PE(grad_u(sum(u * x)));
PE(grad_x(sum(u * x)));
PE(grad_u(sum(x + u)));
PE(grad_x(sum(x + u)));
PE(grad_u(sum(u + x)));
PE(grad_x(sum(u + x)));
PE(grad_u(sum(x - u)));
PE(grad_x(sum(x - u)));
PE(grad_u(sum(u - x)));
PE(grad_x(sum(u - x)));
PE(grad_u(sum(u / x)));
PE(grad_x(sum(u / x)));
PN("Convolution.");
PE(grad_u(sum(conv<Scal>(u, -4, 1, 1, 1, 1) * matr)));
using W = std::array<Scal, 9>;
PE(grad_u(sum(conv<Scal>(u, W{0, 1, 0, 1, -4, 1, 0, 1, 0}) * matr)));
PE(grad_u(sum(conv<Scal>(u, W{1, 0, 1, 0, -4, 0, 1, 0, 1}) * matr)));
}
template <class T = double>
static void TestMultigrid() {
std::cout << '\n' << __func__ << std::endl;
auto Str = [](auto m) { return MatrixToStr(m, 5); };
const auto ufine = Matrix<T>::iota(10) * 2;
const auto u = ufine.restrict();
auto zeros = Matrix<T>::zeros_like(u);
Var var_x(zeros, "x");
PEN(Str(u));
PEN(Str(ufine));
auto x = MakeTracer<Extra>(var_x);
auto grad = [&](auto e) {
e.UpdateGrad();
return x.grad();
};
PEN(Str(grad(sum(x * u))));
PEN(Str(grad(sum(interpolate(x) * ufine) / 4)));
}
int main() {
TestReverse(1., "scal");
TestReverse(Matrix<double>::eye(3), "matr");
TestMatrix();
TestMultigrid();
}