-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
47 lines (32 loc) · 1.33 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
### local imports
from models import LeNet5, LeNet5v2, LeNet5v2b
# Create the model and load the (trained) weights
model = LeNet5()
model.load_state_dict(torch.load('./lenet5.pth'))
# Define the transform for MNIST data (resize and normalize)
transform = transforms.Compose([
transforms.Resize((32, 32)), # Resize images to 32x32 (LeNet-5 requirement)
transforms.ToTensor(), # Convert images to tensors
transforms.Normalize((0.5,), (0.5,)) # Normalize the images
])
# Load the MNIST dataset
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=1000, shuffle=False)
# Evaluate on the test set after each epoch
model.eval() # Set the model to evaluation mode
correct = 0
total = 0
with torch.no_grad(): # No need to calculate gradients during evaluation
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
test_accuracy = 100 * correct / total
print(f"Test Accuracy: {test_accuracy:.2f}%\n")
#=> Test Accuracy: 98.59%
print("bye")