-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathNestedRecursionHelpers.v
209 lines (174 loc) · 6.96 KB
/
NestedRecursionHelpers.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
(* Useful for development *)
Add LoadPath "../../../base".
Add LoadPath "../lib".
Add LoadPath "../../containers/lib".
Add LoadPath "../../transformers/lib".
Require Import GHC.Base. Import GHC.Base.Notations.
Require Import GHC.Num. Import GHC.Num.Notations.
Require Import GHC.List.
Require Import Util.
Require Import Data.Traversable.
Require Import Data.Functor.Utils.
Require Import HsToCoq.Err.
Require Import Core.
Require Import Panic.
Require Import Util.
From Coq Require Import ssreflect.
Set Bullet Behavior "Strict Subproofs".
Generalizable All Variables.
(******************************************************************************)
(** Ltac **)
(* Gets function application heading the given term.
term_head (f ...) = f
*)
Ltac term_head t :=
match t with
| ?f _ => term_head f
| _ => t
end.
(* Functions like `red` (plus `simpl`) within a function application. Ignores
implicit arguments, but requires you to pass the function as an `@name`.
red_within @outer
will find
skipped (outer (f 0 y))
unfold `f`, and simplify the whole thing; for instance, if `f x y = x + y`,
it'll become
skipped (outer y)
(as `0 + y` will be simplified).
*)
Ltac red_within outer :=
match goal with
| |- context[outer ?inner] =>
match type of outer with
| forall {a}, _ => red_within (outer inner)
| _ => let f := term_head inner
in rewrite /f /= || fail 2 "nothing to reduce"
end
| |- _ =>
fail 1 "no occurrences of" outer
end.
(******************************************************************************)
(** CSE **)
(* `zipMapAccumL f s xs1 xs2 = mapAccumL f s (zip xs1 xs2)` (see
`zipMapAccumL_is_mapAccumL_zip`).
We need this for use in `CSE.cseBind` so Coq can see that it's terminating.
We need to make sure `f` is constant between all the recursive calls. That
plus the fact that this is a `fun` that wraps a `fix` means that when we call
into this, the `fix` is inlined, and said `fix` recurses without doing
anything higher-order, thus enabling the termination checker to see through
things and prove `CSE.cseBind` terminating.
The idea behind this was gleaned from Hugo Heberlin on coq-club in an email
from 2010: <https://sympa.inria.fr/sympa/arc/coq-club/2010-09/msg00111.html>
*)
Definition zipMapAccumL {acc x1 x2 y}
(f : acc -> (x1 * x2) -> acc * y)
: acc -> list x1 -> list x2 -> acc * list y :=
fix go (s : acc) (xs1 : list x1) (xs2 : list x2) {struct xs1} : acc * list y :=
match xs1 , xs2 with
| nil , _ => (s, nil)
| _ , nil => (s, nil)
| x1 :: xs1' , x2 :: xs2' => let: (s', y) := f s (x1,x2) in
let: (s'', ys) := go s' xs1' xs2' in
(s'', y :: ys)
end%list.
Theorem zipMapAccumL_is_mapAccumL_zip {Acc X1 X2 Y}
(f : Acc -> (X1 * X2) -> Acc * Y)
(s : Acc)
(xs1 : list X1)
(xs2 : list X2) :
zipMapAccumL f s xs1 xs2 = mapAccumL f s (zip xs1 xs2).
Proof.
rewrite /mapAccumL; do 3 red_within @runStateL.
elim: xs1 s xs2 => [|x1 xs1 IH] s [|x2 xs2] //=.
case app_f: (f s (x1, x2)) => [s' y].
rewrite IH.
case: (foldr _ _ _) => [result] /=.
by rewrite /flip /= app_f.
Qed.
(* `collectNBinders_k n e (fun bs e' => …) = let '(bs,e') := collectNBinders n e in …`,
or both functions panicked (see `collectNBinders_k_is_collectNBinders`).
We need this for use in `CSE.cseBind` so Coq can see that the recursive call
under join points is terminating. *)
Definition collectNBinders_k `{Default r} {b}
(orig_n : nat) (orig_expr : Expr b)
(k : list b -> Expr b -> r) :=
let fix go n bs expr {struct expr} :=
match n , bs , expr with
| 0 , _ , _ => k (reverse bs) expr
| _ , _ , Lam b e => go (n - 1) (cons b bs) e
| _ , _ , _ => panicStr &"collectNBinders_k" someSDoc
end
in go orig_n nil orig_expr.
Theorem collectNBinders_k_is_collectNBinders `{Default r} {b} (orig_n : nat) (orig_expr : Expr b)
(k : list b -> Expr b -> r) :
(collectNBinders_k orig_n orig_expr k = let '(out_bs, out_expr) := collectNBinders orig_n orig_expr in
k out_bs out_expr)
\/
(panicked (collectNBinders_k orig_n orig_expr k) /\ panicked (collectNBinders orig_n orig_expr)).
Proof.
rewrite /collectNBinders_k; set go_k := fix go _ _ (e : Expr b) {struct e} := _.
rewrite /collectNBinders; set go := fix go _ _ (e : Expr b) {struct e} := _.
elim: orig_expr orig_n nil =>
[ v | lit
| e1 IH1 e2 IH2 | v e IH
| bind body IH | scrut IHscrut bndr t alts
| e IH a (* | tickish e IH *)
| a | a ]
[| n]
bs;
try by [right; split; econstructor | left].
move: IH => /(_ (S n - 1) (v :: bs)) /= [-> | IH]; by [left | right].
Qed.
(******************************************************************************)
(** CoreUtils **)
(* `all2Map p f g xs ys = all2 p (map f xs) (map g ys)` (see
`all2Map_is_all2_map_map`).
We need this for use in `CoreUtils.eqExpr` so Coq can see that it's
terminating. We also need to replace `unzip` with `map snd`, which we don't
justify here.
For more on the idea behind why this function works for termination, see
`zipMapAccumL`. *)
Definition all2Map {a b a' b'} (p : a -> b -> bool) (f : a' -> a) (g : b' -> b) : list a' -> list b' -> bool :=
fix all2Map xs0 ys0 :=
match xs0 , ys0 with
| nil , nil => true
| x :: xs , y :: ys => p (f x) (g y) && all2Map xs ys
| _ , _ => false
end.
Theorem all2Map_is_all2_map_map {a b a' b'} (p : a -> b -> bool) (f : a' -> a) (g : b' -> b) xs ys :
all2Map p f g xs ys = all2 p (map f xs) (map g ys).
Proof.
elim: xs ys => [|x xs IH] [|y ys] //=.
by rewrite IH.
Qed.
(******************************************************************************)
(** CoreFVs **)
Definition mapAndUnzipFix {a} {b} {c}
(f : a -> (b * c)) : ((list a) -> ((list b) * (list c))) :=
fix mapAndUnzip y
:= match y with
| nil => pair nil nil
| cons x xs =>
match mapAndUnzip xs with
| pair rs1 rs2 => match f x with
| pair r1 r2 =>
pair (cons r1 rs1) (cons r2 rs2)
end
end
end.
Theorem mapAndUnzipFix_is_mapAndUnzip : forall a b c (f : a -> (b * c)) l,
mapAndUnzip f l = mapAndUnzipFix f l.
Proof.
induction l; try reflexivity.
simpl. rewrite IHl. reflexivity.
Qed.
Lemma map_unzip : forall (a b c : Type)( f : a -> b * c) xs,
mapAndUnzipFix f xs = List.unzip (map f xs).
Proof.
induction xs; simpl; auto.
destruct mapAndUnzipFix.
destruct List.unzip.
destruct (f a0).
inversion IHxs.
auto.
Qed.