-
-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathgeometry2d.js
176 lines (156 loc) · 5.8 KB
/
geometry2d.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/**
* Copyright 2012-2017, Plotly, Inc.
* All rights reserved.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
'use strict';
var mod = require('./mod');
/*
* look for intersection of two line segments
* (1->2 and 3->4) - returns array [x,y] if they do, null if not
*/
exports.segmentsIntersect = segmentsIntersect;
function segmentsIntersect(x1, y1, x2, y2, x3, y3, x4, y4) {
var a = x2 - x1,
b = x3 - x1,
c = x4 - x3,
d = y2 - y1,
e = y3 - y1,
f = y4 - y3,
det = a * f - c * d;
// parallel lines? intersection is undefined
// ignore the case where they are colinear
if(det === 0) return null;
var t = (b * f - c * e) / det,
u = (b * d - a * e) / det;
// segments do not intersect?
if(u < 0 || u > 1 || t < 0 || t > 1) return null;
return {x: x1 + a * t, y: y1 + d * t};
}
/*
* find the minimum distance between two line segments (1->2 and 3->4)
*/
exports.segmentDistance = function segmentDistance(x1, y1, x2, y2, x3, y3, x4, y4) {
if(segmentsIntersect(x1, y1, x2, y2, x3, y3, x4, y4)) return 0;
// the two segments and their lengths squared
var x12 = x2 - x1;
var y12 = y2 - y1;
var x34 = x4 - x3;
var y34 = y4 - y3;
var l2_12 = x12 * x12 + y12 * y12;
var l2_34 = x34 * x34 + y34 * y34;
// calculate distance squared, then take the sqrt at the very end
var dist2 = Math.min(
perpDistance2(x12, y12, l2_12, x3 - x1, y3 - y1),
perpDistance2(x12, y12, l2_12, x4 - x1, y4 - y1),
perpDistance2(x34, y34, l2_34, x1 - x3, y1 - y3),
perpDistance2(x34, y34, l2_34, x2 - x3, y2 - y3)
);
return Math.sqrt(dist2);
};
/*
* distance squared from segment ab to point c
* [xab, yab] is the vector b-a
* [xac, yac] is the vector c-a
* l2_ab is the length squared of (b-a), just to simplify calculation
*/
function perpDistance2(xab, yab, l2_ab, xac, yac) {
var fc_ab = (xac * xab + yac * yab);
if(fc_ab < 0) {
// point c is closer to point a
return xac * xac + yac * yac;
}
else if(fc_ab > l2_ab) {
// point c is closer to point b
var xbc = xac - xab;
var ybc = yac - yab;
return xbc * xbc + ybc * ybc;
}
else {
// perpendicular distance is the shortest
var crossProduct = xac * yab - yac * xab;
return crossProduct * crossProduct / l2_ab;
}
}
// a very short-term cache for getTextLocation, just because
// we're often looping over the same locations multiple times
// invalidated as soon as we look at a different path
var locationCache, workingPath, workingTextWidth;
// turn a path and position along it into x, y, and angle for the given text
exports.getTextLocation = function getTextLocation(path, totalPathLen, positionOnPath, textWidth) {
if(path !== workingPath || textWidth !== workingTextWidth) {
locationCache = {};
workingPath = path;
workingTextWidth = textWidth;
}
if(locationCache[positionOnPath]) {
return locationCache[positionOnPath];
}
// for the angle, use points on the path separated by the text width
// even though due to curvature, the text will cover a bit more than that
var p0 = path.getPointAtLength(mod(positionOnPath - textWidth / 2, totalPathLen));
var p1 = path.getPointAtLength(mod(positionOnPath + textWidth / 2, totalPathLen));
// note: atan handles 1/0 nicely
var theta = Math.atan((p1.y - p0.y) / (p1.x - p0.x));
// center the text at 2/3 of the center position plus 1/3 the p0/p1 midpoint
// that's the average position of this segment, assuming it's roughly quadratic
var pCenter = path.getPointAtLength(mod(positionOnPath, totalPathLen));
var x = (pCenter.x * 4 + p0.x + p1.x) / 6;
var y = (pCenter.y * 4 + p0.y + p1.y) / 6;
var out = {x: x, y: y, theta: theta};
locationCache[positionOnPath] = out;
return out;
};
exports.clearLocationCache = function() {
workingPath = null;
};
/*
* Find the segment of `path` that's within the visible area
* given by `bounds` {left, right, top, bottom}, to within a
* precision of `buffer` px
*
* returns {
* min: position where the path first enters bounds, or 0 if it
* starts within bounds
* max: position where the path last exits bounds, or the path length
* if it finishes within bounds
* total: the total path length - just included so the caller doesn't
* need to call path.getTotalLength() again
* }
*
* Works by starting from either end and repeatedly finding the distance from
* that point to the plot area, and if it's outside the plot, moving along the
* path by that distance (because the plot must be at least that far away on
* the path). Note that if a path enters, exits, and re-enters the plot, we
* will not capture this behavior.
*/
exports.getVisibleSegment = function getVisibleSegment(path, bounds, buffer) {
var left = bounds.left;
var right = bounds.right;
var top = bounds.top;
var bottom = bounds.bottom;
function getDistToPlot(len) {
var pt = path.getPointAtLength(len);
var dx = (pt.x < left) ? left - pt.x : (pt.x > right ? pt.x - right : 0);
var dy = (pt.y < top) ? top - pt.y : (pt.y > bottom ? pt.y - bottom : 0);
return Math.sqrt(dx * dx + dy * dy);
}
var pMin = 0;
var pTotal = path.getTotalLength();
var pMax = pTotal;
var distToPlot = getDistToPlot(pMin);
while(distToPlot) {
pMin += distToPlot + buffer;
if(pMin > pMax) return;
distToPlot = getDistToPlot(pMin);
}
distToPlot = getDistToPlot(pMax);
while(distToPlot) {
pMax -= distToPlot + buffer;
if(pMin > pMax) return;
distToPlot = getDistToPlot(pMax);
}
return {min: pMin, max: pMax, total: pTotal};
};