Skip to content

Latest commit

 

History

History
415 lines (326 loc) · 15.4 KB

sunburst-charts.md

File metadata and controls

415 lines (326 loc) · 15.4 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.3
1.14.6
display_name language name
Python 3 (ipykernel)
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.10.11
description display_as language layout name order page_type permalink thumbnail
How to make Sunburst Charts.
basic
python
base
Sunburst Charts
10
u-guide
python/sunburst-charts/
thumbnail/sunburst.gif

Sunburst plots visualize hierarchical data spanning outwards radially from root to leaves. Similar to Icicle charts and Treemaps, the hierarchy is defined by labels (names for px.icicle) and parents attributes. The root starts from the center and children are added to the outer rings.

Basic Sunburst Plot with plotly.express

Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.

With px.sunburst, each row of the DataFrame is represented as a sector of the sunburst.

import plotly.express as px
data = dict(
    character=["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
    parent=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve" ],
    value=[10, 14, 12, 10, 2, 6, 6, 4, 4])

fig = px.sunburst(
    data,
    names='character',
    parents='parent',
    values='value',
)
fig.show()

Sunburst of a rectangular DataFrame with plotly.express

Hierarchical data are often stored as a rectangular dataframe, with different columns corresponding to different levels of the hierarchy. px.sunburst can take a path parameter corresponding to a list of columns. Note that id and parent should not be provided if path is given.

import plotly.express as px
df = px.data.tips()
fig = px.sunburst(df, path=['day', 'time', 'sex'], values='total_bill')
fig.show()

Sunburst of a rectangular DataFrame with continuous color argument in px.sunburst

If a color argument is passed, the color of a node is computed as the average of the color values of its children, weighted by their values.

import plotly.express as px
import numpy as np
df = px.data.gapminder().query("year == 2007")
fig = px.sunburst(df, path=['continent', 'country'], values='pop',
                  color='lifeExp', hover_data=['iso_alpha'],
                  color_continuous_scale='RdBu',
                  color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop']))
fig.show()

Sunburst of a rectangular DataFrame with discrete color argument in px.sunburst

When the argument of color corresponds to non-numerical data, discrete colors are used. If a sector has the same value of the color column for all its children, then the corresponding color is used, otherwise the first color of the discrete color sequence is used.

import plotly.express as px
df = px.data.tips()
fig = px.sunburst(df, path=['sex', 'day', 'time'], values='total_bill', color='day')
fig.show()

In the example below the color of Saturday and Sunday sectors is the same as Dinner because there are only Dinner entries for Saturday and Sunday. However, for Female -> Friday there are both lunches and dinners, hence the "mixed" color (blue here) is used.

import plotly.express as px
df = px.data.tips()
fig = px.sunburst(df, path=['sex', 'day', 'time'], values='total_bill', color='time')
fig.show()

Using an explicit mapping for discrete colors

For more information about discrete colors, see the dedicated page.

import plotly.express as px
df = px.data.tips()
fig = px.sunburst(df, path=['sex', 'day', 'time'], values='total_bill', color='time',
                  color_discrete_map={'(?)':'black', 'Lunch':'gold', 'Dinner':'darkblue'})
fig.show()

Rectangular data with missing values

If the dataset is not fully rectangular, missing values should be supplied as None. Note that the parents of None entries must be a leaf, i.e. it cannot have other children than None (otherwise a ValueError is raised).

import plotly.express as px
import pandas as pd
vendors = ["A", "B", "C", "D", None, "E", "F", "G", "H", None]
sectors = ["Tech", "Tech", "Finance", "Finance", "Other",
           "Tech", "Tech", "Finance", "Finance", "Other"]
regions = ["North", "North", "North", "North", "North",
           "South", "South", "South", "South", "South"]
sales = [1, 3, 2, 4, 1, 2, 2, 1, 4, 1]
df = pd.DataFrame(
    dict(vendors=vendors, sectors=sectors, regions=regions, sales=sales)
)
print(df)
fig = px.sunburst(df, path=['regions', 'sectors', 'vendors'], values='sales')
fig.show()

Basic Sunburst Plot with go.Sunburst

If Plotly Express does not provide a good starting point, it is also possible to use the more generic go.Sunburst class from plotly.graph_objects.

Main arguments:

  1. labels (names in px.sunburst since labels is reserved for overriding columns names): sets the labels of sunburst sectors.
  2. parents: sets the parent sectors of sunburst sectors. An empty string '' is used for the root node in the hierarchy. In this example, the root is "Eve".
  3. values: sets the values associated with sunburst sectors, determining their width (See the branchvalues section below for different modes for setting the width).
import plotly.graph_objects as go

fig =go.Figure(go.Sunburst(
    labels=["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
    parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve" ],
    values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
))
# Update layout for tight margin
# See https://plotly.com/python/creating-and-updating-figures/
fig.update_layout(margin = dict(t=0, l=0, r=0, b=0))

fig.show()

Sunburst with Repeated Labels

import plotly.graph_objects as go

fig =go.Figure(go.Sunburst(
 ids=[
    "North America", "Europe", "Australia", "North America - Football", "Soccer",
    "North America - Rugby", "Europe - Football", "Rugby",
    "Europe - American Football","Australia - Football", "Association",
    "Australian Rules", "Autstralia - American Football", "Australia - Rugby",
    "Rugby League", "Rugby Union"
  ],
  labels= [
    "North<br>America", "Europe", "Australia", "Football", "Soccer", "Rugby",
    "Football", "Rugby", "American<br>Football", "Football", "Association",
    "Australian<br>Rules", "American<br>Football", "Rugby", "Rugby<br>League",
    "Rugby<br>Union"
  ],
  parents=[
    "", "", "", "North America", "North America", "North America", "Europe",
    "Europe", "Europe","Australia", "Australia - Football", "Australia - Football",
    "Australia - Football", "Australia - Football", "Australia - Rugby",
    "Australia - Rugby"
  ],
))
fig.update_layout(margin = dict(t=0, l=0, r=0, b=0))

fig.show()

Branchvalues

With branchvalues "total", the value of the parent represents the width of its wedge. In the example below, "Enoch" is 4 and "Awan" is 6 and so Enoch's width is 4/6ths of Awans. With branchvalues "remainder", the parent's width is determined by its own value plus those of its children. So, Enoch's width is 4/10ths of Awan's (4 / (6 + 4)).

Note that this means that the sum of the values of the children cannot exceed the value of their parent when branchvalues is set to "total". When branchvalues is set to "remainder" (the default), children will not take up all of the space below their parent (unless the parent is the root and it has a value of 0).

import plotly.graph_objects as go

fig =go.Figure(go.Sunburst(
    labels=[ "Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
    parents=["",    "Eve",  "Eve",  "Seth", "Seth", "Eve",  "Eve",  "Awan",  "Eve" ],
    values=[  65,    14,     12,     10,     2,      6,      6,      4,       4],
    branchvalues="total",
))
fig.update_layout(margin = dict(t=0, l=0, r=0, b=0))

fig.show()

Large Number of Slices

This example uses a plotly grid attribute for the subplots. Reference the row and column destination using the domain attribute.

import plotly.graph_objects as go

import pandas as pd

df1 = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/sunburst-coffee-flavors-complete.csv')
df2 = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/coffee-flavors.csv')

fig = go.Figure()

fig.add_trace(go.Sunburst(
    ids=df1.ids,
    labels=df1.labels,
    parents=df1.parents,
    domain=dict(column=0)
))

fig.add_trace(go.Sunburst(
    ids=df2.ids,
    labels=df2.labels,
    parents=df2.parents,
    domain=dict(column=1),
    maxdepth=2
))

fig.update_layout(
    grid= dict(columns=2, rows=1),
    margin = dict(t=0, l=0, r=0, b=0)
)

fig.show()

Controlling text orientation inside sunburst sectors

The insidetextorientation attribute controls the orientation of text inside sectors. With "auto" the texts may automatically be rotated to fit with the maximum size inside the slice. Using "horizontal" (resp. "radial", "tangential") forces text to be horizontal (resp. radial or tangential). Note that plotly may reduce the font size in order to fit the text with the requested orientation.

For a figure fig created with plotly express, use fig.update_traces(insidetextorientation='...') to change the text orientation.

import plotly.graph_objects as go
import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/coffee-flavors.csv')

fig = go.Figure()

fig.add_trace(go.Sunburst(
    ids=df.ids,
    labels=df.labels,
    parents=df.parents,
    domain=dict(column=1),
    maxdepth=2,
    insidetextorientation='radial'
))

fig.update_layout(
    margin = dict(t=10, l=10, r=10, b=10)
)

fig.show()

Controlling text fontsize with uniformtext

If you want all the text labels to have the same size, you can use the uniformtext layout parameter. The minsize attribute sets the font size, and the mode attribute sets what happens for labels which cannot fit with the desired fontsize: either hide them or show them with overflow.

Note: animated transitions are currently not implemented when uniformtext is used.

import plotly.graph_objects as go
import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/sunburst-coffee-flavors-complete.csv')

fig = go.Figure(go.Sunburst(
        ids = df.ids,
        labels = df.labels,
        parents = df.parents))
fig.update_layout(uniformtext=dict(minsize=10, mode='hide'))
fig.show()

Pattern Fills

New in 5.15

Sunburst charts support patterns (also known as hatching or texture) in addition to color. In this example, we add a different pattern to each level of the hierarchy. We also specify the solidity of the pattern.

import plotly.graph_objects as go

fig = go.Figure(
    go.Sunburst(
        labels=["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
        parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"],
        values=[65, 14, 12, 10, 2, 6, 6, 4, 4],
        branchvalues="total",
        textfont_size=16,
        marker=dict(
            pattern=dict(
                shape=["", "/", "/", ".", ".", "/", "/", ".", "/"], solidity=0.9
            )
        ),
    )
)

fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))

fig.show()

Sunburst chart with a continuous colorscale

The example below visualizes a breakdown of sales (corresponding to sector width) and call success rate (corresponding to sector color) by region, county and salesperson level. For example, when exploring the data you can see that although the East region is behaving poorly, the Tyler county is still above average -- however, its performance is reduced by the poor success rate of salesperson GT.

In the right subplot which has a maxdepth of two levels, click on a sector to see its breakdown to lower levels.

import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/sales_success.csv')
print(df.head())

levels = ['salesperson', 'county', 'region'] # levels used for the hierarchical chart
color_columns = ['sales', 'calls']
value_column = 'calls'

def build_hierarchical_dataframe(df, levels, value_column, color_columns=None):
    """
    Build a hierarchy of levels for Sunburst or Treemap charts.

    Levels are given starting from the bottom to the top of the hierarchy,
    ie the last level corresponds to the root.
    """
    df_all_trees = pd.DataFrame(columns=['id', 'parent', 'value', 'color'])
    for i, level in enumerate(levels):
        df_tree = pd.DataFrame(columns=['id', 'parent', 'value', 'color'])
        dfg = df.groupby(levels[i:]).sum()
        dfg = dfg.reset_index()
        df_tree['id'] = dfg[level].copy()
        if i < len(levels) - 1:
            df_tree['parent'] = dfg[levels[i+1]].copy()
        else:
            df_tree['parent'] = 'total'
        df_tree['value'] = dfg[value_column]
        df_tree['color'] = dfg[color_columns[0]] / dfg[color_columns[1]]
        df_all_trees = df_all_trees.append(df_tree, ignore_index=True)
    total = pd.Series(dict(id='total', parent='',
                              value=df[value_column].sum(),
                              color=df[color_columns[0]].sum() / df[color_columns[1]].sum()))
    df_all_trees = df_all_trees.append(total, ignore_index=True)
    return df_all_trees


df_all_trees = build_hierarchical_dataframe(df, levels, value_column, color_columns)
average_score = df['sales'].sum() / df['calls'].sum()

fig = make_subplots(1, 2, specs=[[{"type": "domain"}, {"type": "domain"}]],)

fig.add_trace(go.Sunburst(
    labels=df_all_trees['id'],
    parents=df_all_trees['parent'],
    values=df_all_trees['value'],
    branchvalues='total',
    marker=dict(
        colors=df_all_trees['color'],
        colorscale='RdBu',
        cmid=average_score),
    hovertemplate='<b>%{label} </b> <br> Sales: %{value}<br> Success rate: %{color:.2f}',
    name=''
    ), 1, 1)

fig.add_trace(go.Sunburst(
    labels=df_all_trees['id'],
    parents=df_all_trees['parent'],
    values=df_all_trees['value'],
    branchvalues='total',
    marker=dict(
        colors=df_all_trees['color'],
        colorscale='RdBu',
        cmid=average_score),
    hovertemplate='<b>%{label} </b> <br> Sales: %{value}<br> Success rate: %{color:.2f}',
    maxdepth=2
    ), 1, 2)

fig.update_layout(margin=dict(t=10, b=10, r=10, l=10))
fig.show()

Reference

See function reference for px.sunburst() or https://plotly.com/python/reference/sunburst/ for more information and chart attribute options!