jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
A 2D histogram contour plot, also known as a density contour plot, is a 2-dimensional generalization of a histogram which resembles a contour plot but is computed by grouping a set of points specified by their x
and y
coordinates into bins, and applying an aggregation function such as count
or sum
(if z
is provided) to compute the value to be used to compute contours. This kind of visualization (and the related 2D histogram, or density heatmap) is often used to manage over-plotting, or situations where showing large data sets as scatter plots would result in points overlapping each other and hiding patterns.
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures. The Plotly Express function density_contour()
can be used to produce density contours.
import plotly.express as px
df = px.data.tips()
fig = px.density_contour(df, x="total_bill", y="tip")
fig.show()
Marginal plots can be added to visualize the 1-dimensional distributions of the two variables. Here we use a marginal histogram
. Other allowable values are violin
, box
and rug
.
import plotly.express as px
df = px.data.tips()
fig = px.density_contour(df, x="total_bill", y="tip", marginal_x="histogram", marginal_y="histogram")
fig.show()
Density contours can also be faceted and discretely colored:
import plotly.express as px
df = px.data.tips()
fig = px.density_contour(df, x="total_bill", y="tip", facet_col="sex", color="smoker")
fig.show()
Plotly Express density contours can be continuously-colored and labeled:
import plotly.express as px
df = px.data.tips()
fig = px.density_contour(df, x="total_bill", y="tip")
fig.update_traces(contours_coloring="fill", contours_showlabels = True)
fig.show()
By passing in a z
value and a histfunc
, density contours can perform basic aggregation operations. Here we show average Sepal Length grouped by Petal Length and Petal Width for the Iris dataset.
import plotly.express as px
df = px.data.iris()
fig = px.density_contour(df, x="petal_length", y="petal_width", z="sepal_length", histfunc="avg")
fig.show()
To build this kind of figure with graph objects without using Plotly Express, we can use the go.Histogram2d
class.
import plotly.graph_objects as go
import numpy as np
np.random.seed(1)
x = np.random.uniform(-1, 1, size=500)
y = np.random.uniform(-1, 1, size=500)
fig = go.Figure(go.Histogram2dContour(
x = x,
y = y
))
fig.show()
import plotly.graph_objects as go
import numpy as np
x = np.random.uniform(-1, 1, size=500)
y = np.random.uniform(-1, 1, size=500)
fig = go.Figure(go.Histogram2dContour(
x = x,
y = y,
colorscale = 'Blues'
))
fig.show()
import plotly.graph_objects as go
import numpy as np
x = np.random.uniform(-1, 1, size=500)
y = np.random.uniform(-1, 1, size=500)
fig = go.Figure(go.Histogram2dContour(
x = x,
y = y,
colorscale = 'Jet',
contours = dict(
showlabels = True,
labelfont = dict(
family = 'Raleway',
color = 'white'
)
),
hoverlabel = dict(
bgcolor = 'white',
bordercolor = 'black',
font = dict(
family = 'Raleway',
color = 'black'
)
)
))
fig.show()
import plotly.graph_objects as go
import numpy as np
t = np.linspace(-1, 1.2, 2000)
x = (t**3) + (0.3 * np.random.randn(2000))
y = (t**6) + (0.3 * np.random.randn(2000))
fig = go.Figure()
fig.add_trace(go.Histogram2dContour(
x = x,
y = y,
colorscale = 'Blues',
reversescale = True,
xaxis = 'x',
yaxis = 'y'
))
fig.add_trace(go.Scatter(
x = x,
y = y,
xaxis = 'x',
yaxis = 'y',
mode = 'markers',
marker = dict(
color = 'rgba(0,0,0,0.3)',
size = 3
)
))
fig.add_trace(go.Histogram(
y = y,
xaxis = 'x2',
marker = dict(
color = 'rgba(0,0,0,1)'
)
))
fig.add_trace(go.Histogram(
x = x,
yaxis = 'y2',
marker = dict(
color = 'rgba(0,0,0,1)'
)
))
fig.update_layout(
autosize = False,
xaxis = dict(
zeroline = False,
domain = [0,0.85],
showgrid = False
),
yaxis = dict(
zeroline = False,
domain = [0,0.85],
showgrid = False
),
xaxis2 = dict(
zeroline = False,
domain = [0.85,1],
showgrid = False
),
yaxis2 = dict(
zeroline = False,
domain = [0.85,1],
showgrid = False
),
height = 600,
width = 600,
bargap = 0,
hovermode = 'closest',
showlegend = False
)
fig.show()
See https://plotly.com/python/reference/histogram2dcontour/ for more information and chart attribute options!