jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
With go.Isosurface
, you can plot isosurface contours of a scalar field value
, which is defined on x
, y
and z
coordinates.
In this first example, we plot the isocontours of values isomin=2
and isomax=6
. In addition, portions of the sides of the coordinate domains for which the value is between isomin
and isomax
(named the caps
) are colored. Please rotate the figure to visualize both the internal surfaces and the caps surfaces on the sides.
import plotly.graph_objects as go
fig= go.Figure(data=go.Isosurface(
x=[0,0,0,0,1,1,1,1],
y=[1,0,1,0,1,0,1,0],
z=[1,1,0,0,1,1,0,0],
value=[1,2,3,4,5,6,7,8],
isomin=2,
isomax=6,
))
fig.show()
For a clearer visualization of internal surfaces, it is possible to remove the caps (color-coded surfaces on the sides of the visualization domain). Caps are visible by default.
import plotly.graph_objects as go
import numpy as np
X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, -5:5:40j]
# ellipsoid
values = X * X * 0.5 + Y * Y + Z * Z * 2
fig = go.Figure(data=go.Isosurface(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=values.flatten(),
isomin=10,
isomax=40,
caps=dict(x_show=False, y_show=False)
))
fig.show()
import plotly.graph_objects as go
import numpy as np
X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, -5:5:40j]
# ellipsoid
values = X * X * 0.5 + Y * Y + Z * Z * 2
fig = go.Figure(data=go.Isosurface(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=values.flatten(),
isomin=10,
isomax=50,
surface_count=5, # number of isosurfaces, 2 by default: only min and max
colorbar_nticks=5, # colorbar ticks correspond to isosurface values
caps=dict(x_show=False, y_show=False)
))
fig.show()
import plotly.graph_objects as go
import numpy as np
X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, -5:5:40j]
# ellipsoid
values = X * X * 0.5 + Y * Y + Z * Z * 2
fig = go.Figure(data=go.Isosurface(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=values.flatten(),
opacity=0.6,
isomin=10,
isomax=50,
surface_count=3,
caps=dict(x_show=False, y_show=False)
))
fig.show()
Here we visualize slices parallel to the axes on top of isosurfaces. For a clearer visualization, the fill
ratio of isosurfaces is decreased below 1 (completely filled).
import plotly.graph_objects as go
import numpy as np
X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, -5:5:40j]
# ellipsoid
values = X * X * 0.5 + Y * Y + Z * Z * 2
fig = go.Figure(data=go.Isosurface(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=values.flatten(),
isomin=5,
isomax=50,
surface_fill=0.4,
caps=dict(x_show=False, y_show=False),
slices_z=dict(show=True, locations=[-1, -3,]),
slices_y=dict(show=True, locations=[0]),
))
fig.show()
import plotly.graph_objects as go
import numpy as np
X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, 0:5:20j]
values = X * X * 0.5 + Y * Y + Z * Z * 2
fig = go.Figure(data=go.Isosurface(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=values.flatten(),
isomin=30,
isomax=50,
surface=dict(count=3, fill=0.7, pattern='odd'),
caps=dict(x_show=True, y_show=True),
))
fig.show()
import plotly.graph_objects as go
import numpy as np
X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, -5:5:40j]
# ellipsoid
values = X * X * 0.5 + Y * Y + Z * Z * 2
fig = go.Figure(data=go.Isosurface(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=values.flatten(),
colorscale='BlueRed',
isomin=10,
isomax=50,
surface_count=3,
caps=dict(x_show=False, y_show=False)
))
fig.show()
import plotly.graph_objects as go
import numpy as np
X, Y, Z = np.mgrid[-5:5:40j, -5:5:40j, 0:5:20j]
values = X * X * 0.5 + Y * Y + Z * Z * 2
fig = go.Figure(data=go.Isosurface(
x=X.flatten(),
y=Y.flatten(),
z=Z.flatten(),
value=values.flatten(),
isomin=30,
isomax=50,
surface=dict(count=3, fill=0.7, pattern='odd'),
showscale=False, # remove colorbar
caps=dict(x_show=True, y_show=True),
))
fig.update_layout(
margin=dict(t=0, l=0, b=0), # tight layout
scene_camera_eye=dict(x=1.86, y=0.61, z=0.98))
fig.show()
See https://plotly.com/python/reference/isosurface/ for more information and chart attribute options!