Skip to content

Latest commit

 

History

History
121 lines (106 loc) · 2.71 KB

3d-line-plots.md

File metadata and controls

121 lines (106 loc) · 2.71 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.1
1.2.3
display_name language name
Python 3
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.7.3
description display_as language layout name order page_type permalink thumbnail
How to make 3D Line Plots
3d_charts
python
base
3D Line Plots
7
u-guide
python/3d-line-plots/
thumbnail/3d-line.jpg

3D Line plot with Plotly Express

import plotly.express as px
df = px.data.gapminder().query("country=='Brazil'")
fig = px.line_3d(df, x="gdpPercap", y="pop", z="year")
fig.show()
import plotly.express as px
df = px.data.gapminder().query("continent=='Europe'")
fig = px.line_3d(df, x="gdpPercap", y="pop", z="year", color='country')
fig.show()

3D Line Plot of Brownian Motion

Here we represent a trajectory in 3D.

import plotly.graph_objects as go
import pandas as pd
import numpy as np

rs = np.random.RandomState()
rs.seed(0)

def brownian_motion(T = 1, N = 100, mu = 0.1, sigma = 0.01, S0 = 20):
    dt = float(T)/N
    t = np.linspace(0, T, N)
    W = rs.standard_normal(size = N)
    W = np.cumsum(W)*np.sqrt(dt) # standard brownian motion
    X = (mu-0.5*sigma**2)*t + sigma*W
    S = S0*np.exp(X) # geometric brownian motion
    return S

dates = pd.date_range('2012-01-01', '2013-02-22')
T = (dates.max()-dates.min()).days / 365
N = dates.size
start_price = 100
y = brownian_motion(T, N, sigma=0.1, S0=start_price)
z = brownian_motion(T, N, sigma=0.1, S0=start_price)

fig = go.Figure(data=go.Scatter3d(
    x=dates, y=y, z=z,
    marker=dict(
        size=4,
        color=z,
        colorscale='Viridis',
    ),
    line=dict(
        color='darkblue',
        width=2
    )
))

fig.update_layout(
    width=800,
    height=700,
    autosize=False,
    scene=dict(
        camera=dict(
            up=dict(
                x=0,
                y=0,
                z=1
            ),
            eye=dict(
                x=0,
                y=1.0707,
                z=1,
            )
        ),
        aspectratio = dict( x=1, y=1, z=0.7 ),
        aspectmode = 'manual'
    ),
)

fig.show()

Reference

See function reference for px.(line_3d) or https://plotly.com/python/reference/scatter3d/#scatter3d-marker-line for more information and chart attribute options!