Skip to content

Latest commit

 

History

History
107 lines (88 loc) · 3.27 KB

bio-clustergram.md

File metadata and controls

107 lines (88 loc) · 3.27 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.3
1.13.0
display_name language name
Python 3 (ipykernel)
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.9.7
display_as language layout name order page_type permalink thumbnail
bio
python
base
Clustergram
1
u-guide
python/clustergram/
thumbnail/clustergram.png

Default Clustergram

A clustergram is a combination heatmap-dendrogram that is commonly used in gene expression data. The hierarchical clustering that is represented by the dendrograms can be used to identify groups of genes with related expression levels. The Dash Bio Clustergram component is a Python-based component that uses plotly.py to generate a figure. It takes as input a two-dimensional numpy array of floating-point values. Imputation of missing data and computation of hierarchical clustering both occur within the component itself. Clusters that meet or exceed a user-defined threshold of similarity comprise single traces in the corresponding dendrogram, and can be highlighted with annotations. The user can specify additional parameters to customize the metrics and methods used to compute parts of the clustering, such as the pairwise distance between observations and the linkage matrix.

import pandas as pd
import dash_bio


df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/clustergram_brain_cancer.csv')

dash_bio.Clustergram(
    data=df,
    column_labels=list(df.columns.values),
    row_labels=list(df.index),
    height=800,
    width=700
)

Dendrogram Cluster Colors/Line Widths

Change the colors of the dendrogram traces that are used to represent clusters, and configure their line widths.

import pandas as pd
import dash_bio


df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/clustergram_brain_cancer.csv')

dash_bio.Clustergram(
    data=df,
    column_labels=list(df.columns.values),
    row_labels=list(df.index),
    height=800,
    width=700,
    color_list={
        'row': ['#636EFA', '#00CC96', '#19D3F3'],
        'col': ['#AB63FA', '#EF553B'],
        'bg': '#506784'
    },
    line_width=2
)

Relative Dendrogram Size

Change the relative width and height of, respectively, the row and column dendrograms compared to the width and height of the heatmap.

import pandas as pd
import dash_bio


df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Dash_Bio/Chromosomal/clustergram_brain_cancer.csv')

dash_bio.Clustergram(
    data=df,
    column_labels=list(df.columns.values),
    row_labels=list(df.index),
    height=800,
    width=700,
    display_ratio=[0.1, 0.7]
)

Clustergram with Dash

from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'bio-clustergram', width='100%', height=1200)