Skip to content

Latest commit

 

History

History
76 lines (63 loc) · 1.87 KB

bio-volcano-plot.md

File metadata and controls

76 lines (63 loc) · 1.87 KB
jupyter
celltoolbar jupytext kernelspec language_info plotly
Tags
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.3
1.13.0
display_name language name
Python 3 (ipykernel)
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.9.7
display_as language layout name order page_type permalink thumbnail
bio
python
base
Volcano Plot
1
u-guide
python/volcano-plot/
thumbnail/volcano_plot.png

VolcanoPlot

Volcano Plot interactively identifies clinically meaningful markers in genomic experiments, i.e., markers that are statistically significant and have an effect size greater than some threshold. Specifically, volcano plots depict the negative log-base-10 p-values plotted against their effect size.

import pandas as pd
import dash_bio


df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/volcano_data1.csv')

dash_bio.VolcanoPlot(
    dataframe=df,
)

Point Sizes And Line Widths

Change the size of the points on the scatter plot, and the widths of the effect lines and genome-wide line.

import pandas as pd
import dash_bio


df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/volcano_data1.csv')

dash_bio.VolcanoPlot(
    dataframe=df,
    point_size=10,
    effect_size_line_width=4,
    genomewideline_width=2
)

VolcanoPlot with Dash

from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'bio-volcano', width='100%', height=1200)