jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Dumbbell plots are useful for demonstrating change between two sets of data points, for example, the population change for a selection of countries for two different years.
In this example, we compare life expectancy in 1952 with life expectancy in 2002 for countries in Europe.
import plotly.graph_objects as go
from plotly import data
import pandas as pd
df = data.gapminder()
df = df.loc[(df.continent == "Europe") & (df.year.isin([1952, 2002]))]
countries = (
df.loc[(df.continent == "Europe") & (df.year.isin([2002]))]
.sort_values(by=["lifeExp"], ascending=True)["country"]
.unique()
)
data = {"line_x": [], "line_y": [], "1952": [], "2002": [], "colors": [], "years": [], "countries": []}
for country in countries:
data["1952"].extend([df.loc[(df.year == 1952) & (df.country == country)]["lifeExp"].values[0]])
data["2002"].extend([df.loc[(df.year == 2002) & (df.country == country)]["lifeExp"].values[0]])
data["line_x"].extend(
[
df.loc[(df.year == 1952) & (df.country == country)]["lifeExp"].values[0],
df.loc[(df.year == 2002) & (df.country == country)]["lifeExp"].values[0],
None,
]
)
data["line_y"].extend([country, country, None]),
fig = go.Figure(
data=[
go.Scatter(
x=data["line_x"],
y=data["line_y"],
mode="lines",
showlegend=False,
marker=dict(
color="grey"
)
),
go.Scatter(
x=data["1952"],
y=countries,
mode="markers",
name="1952",
marker=dict(
color="green",
size=10
)
),
go.Scatter(
x=data["2002"],
y=countries,
mode="markers",
name="2002",
marker=dict(
color="blue",
size=10
)
),
]
)
fig.update_layout(
title=dict(text="Life Expectancy in Europe: 1952 and 2002"),
height=1000,
legend_itemclick=False
)
fig.show()
Note: The arrow
, angleref
, and standoff
properties used on the marker
in this example are new in 5.11
In this example, we add arrow markers to the plot. The first trace adds the lines connecting the data points and arrow markers.
The second trace adds circle markers. On the first trace, we use standoff=8
to position the arrow marker back from the data point.
For the arrow marker to point directly at the circle marker, this value should be half the circle marker size, which is hardcoded to 16 here.
import pandas as pd
import plotly.graph_objects as go
from plotly import data
df = data.gapminder()
df = df.loc[(df.continent == "Europe") & (df.year.isin([1952, 2002]))]
countries = (
df.loc[(df.continent == "Europe") & (df.year.isin([2002]))]
.sort_values(by=["lifeExp"], ascending=True)["country"]
.unique()
)
data = {"line_x": [], "line_y": [], "1952": [], "2002": [], "colors": [], "years": [], "countries": []}
for country in countries:
data["1952"].extend([df.loc[(df.year == 1952) & (df.country == country)]["lifeExp"].values[0]])
data["2002"].extend([df.loc[(df.year == 2002) & (df.country == country)]["lifeExp"].values[0]])
data["line_x"].extend(
[
df.loc[(df.year == 1952) & (df.country == country)]["lifeExp"].values[0],
df.loc[(df.year == 2002) & (df.country == country)]["lifeExp"].values[0],
None,
]
)
data["line_y"].extend([country, country, None]),
fig = go.Figure(
data=[
go.Scatter(
x=data["line_x"],
y=data["line_y"],
mode="markers+lines",
showlegend=False,
marker=dict(
symbol="arrow",
color="black",
size=16,
angleref="previous",
standoff=8
)
),
go.Scatter(
x=data["1952"],
y=countries,
name="1952",
mode="markers",
marker=dict(
color="silver",
size=16,
)
),
go.Scatter(
x=data["2002"],
y=countries,
name="2002",
mode="markers",
marker=dict(
color="lightskyblue",
size=16,
),
),
]
)
fig.update_layout(
title=dict(text="Life Expectancy in Europe: 1952 and 2002"),
height=1000,
legend_itemclick=False
)
fig.show()