jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Plotly's Python API contains a figure factory module which includes many wrapper functions that create unique chart types that are not yet included in plotly.js, Plotly's open-source graphing library. The figure factory functions create a full figure, so some Plotly features, such as subplotting, should be implemented slightly differently with these charts.
First create the figures that you'd like to appear in the subplot:
import plotly.figure_factory as ff
import plotly.graph_objects as go
import numpy as np
## Create first figure
x1,y1 = np.meshgrid(np.arange(0, 2, .2), np.arange(0, 2, .2))
u1 = np.cos(x1)*y1
v1 = np.sin(x1)*y1
fig1 = ff.create_quiver(x1, y1, u1, v1, name='Quiver')
## Create second figure
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
Y, X = np.meshgrid(x, y)
u = -1 - X**2 + Y
v = 1 + X - Y**2
fig2 = ff.create_streamline(x, y, u, v, arrow_scale=.1, name='Streamline')
Edit the figures' x and y axes attributes to create subplots:
for i in range(len(fig1.data)):
fig1.data[i].xaxis='x1'
fig1.data[i].yaxis='y1'
fig1.layout.xaxis1.update({'anchor': 'y1'})
fig1.layout.yaxis1.update({'anchor': 'x1', 'domain': [.55, 1]})
for i in range(len(fig2.data)):
fig2.data[i].xaxis='x2'
fig2.data[i].yaxis='y2'
# initialize xaxis2 and yaxis2
fig2['layout']['xaxis2'] = {}
fig2['layout']['yaxis2'] = {}
fig2.layout.xaxis2.update({'anchor': 'y2'})
fig2.layout.yaxis2.update({'anchor': 'x2', 'domain': [0, .45]})
Combine the data and layout objects to create a figure
fig = go.Figure()
fig.add_traces([fig1.data[0], fig2.data[0]])
fig.layout.update(fig1.layout)
fig.layout.update(fig2.layout)
fig.show()
import plotly.graph_objects as go
import plotly.figure_factory as ff
table_data = [['Team', 'Wins', 'Losses', 'Ties'],
['Montréal<br>Canadiens', 18, 4, 0],
['Dallas Stars', 18, 5, 0],
['NY Rangers', 16, 5, 0],
['Boston<br>Bruins', 13, 8, 0],
['Chicago<br>Blackhawks', 13, 8, 0],
['LA Kings', 13, 8, 0],
['Ottawa<br>Senators', 12, 5, 0]]
fig = ff.create_table(table_data, height_constant=60)
teams = ['Montréal Canadiens', 'Dallas Stars', 'NY Rangers',
'Boston Bruins', 'Chicago Blackhawks', 'LA Kings', 'Ottawa Senators']
GFPG = [3.54, 3.48, 3.0, 3.27, 2.83, 2.45, 3.18]
GAPG = [2.17, 2.57, 2.0, 2.91, 2.57, 2.14, 2.77]
trace1 = go.Scatter(x=teams, y=GFPG,
marker=dict(color='#0099ff'),
name='Goals For<br>Per Game',
xaxis='x2', yaxis='y2')
trace2 = go.Scatter(x=teams, y=GAPG,
marker=dict(color='#404040'),
name='Goals Against<br>Per Game',
xaxis='x2', yaxis='y2')
fig.add_traces([trace1, trace2])
# initialize xaxis2 and yaxis2
fig['layout']['xaxis2'] = {}
fig['layout']['yaxis2'] = {}
# Edit layout for subplots
fig.layout.xaxis.update({'domain': [0, .5]})
fig.layout.xaxis2.update({'domain': [0.6, 1.]})
# The graph's yaxis MUST BE anchored to the graph's xaxis
fig.layout.yaxis2.update({'anchor': 'x2'})
fig.layout.yaxis2.update({'title': 'Goals'})
# Update the margins to add a title and see graph x-labels.
fig.layout.margin.update({'t':50, 'b':100})
fig.layout.update({'title': '2016 Hockey Stats'})
fig.show()
import plotly.graph_objects as go
import plotly.figure_factory as ff
# Add table data
table_data = [['Team', 'Wins', 'Losses', 'Ties'],
['Montréal<br>Canadiens', 18, 4, 0],
['Dallas Stars', 18, 5, 0],
['NY Rangers', 16, 5, 0],
['Boston<br>Bruins', 13, 8, 0],
['Chicago<br>Blackhawks', 13, 8, 0],
['Ottawa<br>Senators', 12, 5, 0]]
# Initialize a figure with ff.create_table(table_data)
fig = ff.create_table(table_data, height_constant=60)
# Add graph data
teams = ['Montréal Canadiens', 'Dallas Stars', 'NY Rangers',
'Boston Bruins', 'Chicago Blackhawks', 'Ottawa Senators']
GFPG = [3.54, 3.48, 3.0, 3.27, 2.83, 3.18]
GAPG = [2.17, 2.57, 2.0, 2.91, 2.57, 2.77]
# Make traces for graph
trace1 = go.Bar(x=teams, y=GFPG, xaxis='x2', yaxis='y2',
marker=dict(color='#0099ff'),
name='Goals For<br>Per Game')
trace2 = go.Bar(x=teams, y=GAPG, xaxis='x2', yaxis='y2',
marker=dict(color='#404040'),
name='Goals Against<br>Per Game')
# Add trace data to figure
fig.add_traces([trace1, trace2])
# initialize xaxis2 and yaxis2
fig['layout']['xaxis2'] = {}
fig['layout']['yaxis2'] = {}
# Edit layout for subplots
fig.layout.yaxis.update({'domain': [0, .45]})
fig.layout.yaxis2.update({'domain': [.6, 1]})
# The graph's yaxis2 MUST BE anchored to the graph's xaxis2 and vice versa
fig.layout.yaxis2.update({'anchor': 'x2'})
fig.layout.xaxis2.update({'anchor': 'y2'})
fig.layout.yaxis2.update({'title': 'Goals'})
# Update the margins to add a title and see graph x-labels.
fig.layout.margin.update({'t':75, 'l':50})
fig.layout.update({'title': '2016 Hockey Stats'})
# Update the height because adding a graph vertically will interact with
# the plot height calculated for the table
fig.layout.update({'height':800})
# Plot!
fig.show()
See https://plotly.com/python/subplots/ for more information on working with subplots. See https://plotly.com/python/reference/ for more information regarding chart attributes!