Skip to content

Commit 79dbd8f

Browse files
removing odd non-breaking-spaces from headers
1 parent 878da7e commit 79dbd8f

18 files changed

+35
-35
lines changed

doc/python/3d-axes.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -141,7 +141,7 @@ fig.show()
141141
import plotly.graph_objects as go
142142
import numpy as np
143143

144-
# Define random surface
144+
# Define random surface
145145
N = 50
146146
fig = go.Figure(data=[go.Mesh3d(x=(60*np.random.randn(N)),
147147
y=(25*np.random.randn(N)),
@@ -150,7 +150,7 @@ fig = go.Figure(data=[go.Mesh3d(x=(60*np.random.randn(N)),
150150
color='rgba(100,22,200,0.5)'
151151
)])
152152

153-
# Different types of customized ticks
153+
# Different types of customized ticks
154154
fig.update_layout(scene = dict(
155155
xaxis = dict(
156156
ticktext= ['TICKS','MESH','PLOTLY','PYTHON'],
@@ -184,7 +184,7 @@ fig = go.Figure(data=[go.Mesh3d(x=(30*np.random.randn(N)),
184184
opacity=0.5,)])
185185

186186

187-
# xaxis.backgroundcolor is used to set background color
187+
# xaxis.backgroundcolor is used to set background color
188188
fig.update_layout(scene = dict(
189189
xaxis = dict(
190190
backgroundcolor="rgb(200, 200, 230)",

doc/python/box-plots.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -280,7 +280,7 @@ fig.add_trace(go.Box(
280280
name="All Points",
281281
jitter=0.3,
282282
pointpos=-1.8,
283-
boxpoints='all', # represent all points
283+
boxpoints='all', # represent all points
284284
marker_color='rgb(7,40,89)',
285285
line_color='rgb(7,40,89)'
286286
))
@@ -353,7 +353,7 @@ fig.add_trace(go.Box(
353353

354354
fig.update_layout(
355355
yaxis_title='normalized moisture',
356-
boxmode='group' # group together boxes of the different traces for each value of x
356+
boxmode='group' # group together boxes of the different traces for each value of x
357357
)
358358
fig.show()
359359
```

doc/python/bubble-maps.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ fig = px.scatter_geo(df, locations="iso_alpha", color="continent",
5050
fig.show()
5151
```
5252

53-
### Bubble Map with animation
53+
### Bubble Map with animation
5454

5555
```python
5656
import plotly.express as px

doc/python/choropleth-maps.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -260,7 +260,7 @@ fig.update_layout(
260260
geo = dict(
261261
scope='usa',
262262
projection=go.layout.geo.Projection(type = 'albers usa'),
263-
showlakes=True, # lakes
263+
showlakes=True, # lakes
264264
lakecolor='rgb(255, 255, 255)'),
265265
)
266266

doc/python/error-bars.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ jupyter:
3333
thumbnail: thumbnail/error-bar.jpg
3434
---
3535

36-
### Error Bars with Plotly Express
36+
### Error Bars with Plotly Express
3737

3838
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/). For functions representing 2D data points such as [`px.scatter`](https://plot.ly/python/line-and-scatter/), [`px.line`](https://plot.ly/python/line-charts/), [`px.bar`](https://plot.ly/python/bar-charts/) etc., error bars are given as a column name which is the value of the `error_x` (for the error on x position) and `error_y` (for the error on y position).
3939

@@ -46,7 +46,7 @@ fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species",
4646
fig.show()
4747
```
4848

49-
#### Asymmetric Error Bars with Plotly Express
49+
#### Asymmetric Error Bars with Plotly Express
5050

5151
```python
5252
import plotly.express as px

doc/python/filled-area-plots.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ import plotly.graph_objects as go
7070

7171
fig = go.Figure()
7272
fig.add_trace(go.Scatter(x=[1, 2, 3, 4], y=[0, 2, 3, 5], fill='tozeroy',
73-
mode='none' # override default markers+lines
73+
mode='none' # override default markers+lines
7474
))
7575
fig.add_trace(go.Scatter(x=[1, 2, 3, 4], y=[3, 5, 1, 7], fill='tonexty',
7676
mode= 'none'))
@@ -92,7 +92,7 @@ fig.add_trace(go.Scatter(x=[1, 2, 3, 4], y=[3, 4, 8, 3],
9292
fig.add_trace(go.Scatter(
9393
x=[1, 2, 3, 4],
9494
y=[1, 6, 2, 6],
95-
fill='tonexty', # fill area between trace0 and trace1
95+
fill='tonexty', # fill area between trace0 and trace1
9696
mode='lines', line_color='indigo'))
9797

9898
fig.show()

doc/python/histograms.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -244,7 +244,7 @@ fig.add_trace(go.Histogram(
244244
x=x0,
245245
histnorm='percent',
246246
name='control', # name used in legend and hover labels
247-
xbins=dict( # bins used for histogram
247+
xbins=dict( # bins used for histogram
248248
start=-4.0,
249249
end=3.0,
250250
size=0.5
@@ -266,10 +266,10 @@ fig.add_trace(go.Histogram(
266266
))
267267

268268
fig.update_layout(
269-
title_text='Sampled Results', # title of plot
269+
title_text='Sampled Results', # title of plot
270270
xaxis_title_text='Value', # xaxis label
271271
yaxis_title_text='Count', # yaxis label
272-
bargap=0.2, # gap between bars of adjacent location coordinates
272+
bargap=0.2, # gap between bars of adjacent location coordinates
273273
bargroupgap=0.1 # gap between bars of the same location coordinates
274274
)
275275

@@ -338,7 +338,7 @@ trace5 = go.Histogram(x=x,
338338
xbins=dict(
339339
start='1969-11-15',
340340
end='1972-03-31',
341-
size= 'M2'), # 2 months
341+
size= 'M2'), # 2 months
342342
autobinx = False
343343
)
344344

doc/python/line-charts.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ fig = px.line(df, x="year", y="lifeExp", color="continent",
7070
fig.show()
7171
```
7272

73-
### Line Plot with go.Scatter
73+
### Line Plot with go.Scatter
7474

7575
If Plotly Express does not provide a good starting point, it is possible to use the more generic `go.Scatter` function from `plotly.graph_objects`. Whereas `plotly.express` has two functions `scatter` and `line`, `go.Scatter` can be used both for plotting points (makers) or lines, depending on the value of `mode`. The different options of `go.Scatter` are documented in its [reference page](https://plot.ly/python/reference/#scatter).
7676

doc/python/lines-on-maps.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ fig = px.line_geo(df, locations="iso_alpha",
5252
fig.show()
5353
```
5454

55-
## Lines on Maps with plotly.graph_objects
55+
## Lines on Maps with plotly.graph_objects
5656

5757
### US Flight Paths Map
5858

doc/python/network-graphs.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ Install the Python library `networkx` with `pip install networkx`.
4343

4444

4545

46-
### Create random graph
46+
### Create random graph
4747

4848
```python
4949
import plotly.graph_objects as go

doc/python/peak-finding.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ fig = go.Figure(data=go.Scatter(
6262
fig.show()
6363
```
6464

65-
#### Peak Detection
65+
#### Peak Detection
6666

6767
We need to find the x-axis indices for the peaks in order to determine where the peaks are located.
6868

doc/python/pie-charts.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -81,9 +81,9 @@ For more information about discrete colors, see the [dedicated page](/python/dis
8181
import plotly.express as px
8282
df = px.data.tips()
8383
fig = px.pie(df, values='tip', names='day', color='day',
84-
color_discrete_map={'Thur':'lightcyan',
85-
'Fri':'cyan',
86-
'Sat':'royalblue',
84+
color_discrete_map={'Thur':'lightcyan',
85+
'Fri':'cyan',
86+
'Sat':'royalblue',
8787
'Sun':'darkblue'})
8888
fig.show()
8989
```
@@ -213,7 +213,7 @@ fig.add_trace(go.Pie(labels=labels, values=[16, 15, 12, 6, 5, 4, 42], name="GHG
213213
fig.add_trace(go.Pie(labels=labels, values=[27, 11, 25, 8, 1, 3, 25], name="CO2 Emissions"),
214214
1, 2)
215215

216-
# Use `hole` to create a donut-like pie chart
216+
# Use `hole` to create a donut-like pie chart
217217
fig.update_traces(hole=.4, hoverinfo="label+percent+name")
218218

219219
fig.update_layout(

doc/python/polar-chart.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -257,7 +257,7 @@ fig.update_traces(mode = "lines+markers",
257257
# The sector is [0, 360] by default, we update it for the first plot only
258258
fig.update_layout(
259259
showlegend = False,
260-
polar = dict(# setting parameters for the second plot would be polar2=dict(...)
260+
polar = dict(# setting parameters for the second plot would be polar2=dict(...)
261261
sector = [150,210],
262262
))
263263

doc/python/sankey-diagram.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ A [Sankey diagram](https://en.wikipedia.org/wiki/Sankey_diagram) is a flow diagr
3939

4040

4141
### Basic Sankey Diagram
42-
Sankey diagrams visualize the contributions to a flow by defining [source](https://plot.ly/python/reference/#sankey-link-source) to represent the source node, [target](https://plot.ly/python/reference/#sankey-link-target) for the target node, [value](https://plot.ly/python/reference/#sankey-link-value) to set the flow volum, and [label](https://plot.ly/python/reference/#sankey-node-label) that shows the node name.
42+
Sankey diagrams visualize the contributions to a flow by defining [source](https://plot.ly/python/reference/#sankey-link-source) to represent the source node, [target](https://plot.ly/python/reference/#sankey-link-target) for the target node, [value](https://plot.ly/python/reference/#sankey-link-value) to set the flow volum, and [label](https://plot.ly/python/reference/#sankey-node-label) that shows the node name.
4343

4444
```python
4545
import plotly.graph_objects as go
@@ -74,7 +74,7 @@ data = json.loads(response.read())
7474
fig = go.Figure(data=[go.Sankey(
7575
valueformat = ".0f",
7676
valuesuffix = "TWh",
77-
# Define nodes
77+
# Define nodes
7878
node = dict(
7979
pad = 15,
8080
thickness = 15,
@@ -96,7 +96,7 @@ fig.show()
9696
```
9797

9898
### Style Sankey Diagram
99-
This example also uses [hovermode](https://plot.ly/python/reference/#layout-hovermode) to enable multiple tooltips.
99+
This example also uses [hovermode](https://plot.ly/python/reference/#layout-hovermode) to enable multiple tooltips.
100100

101101
```python
102102
import plotly.graph_objects as go
@@ -147,7 +147,7 @@ fig = go.Figure(go.Sankey(
147147
"label": ["A", "B", "C", "D", "E", "F"],
148148
"x": [0.2, 0.1, 0.5, 0.7, 0.3, 0.5],
149149
"y": [0.7, 0.5, 0.2, 0.4, 0.2, 0.3],
150-
'pad':10}, # 10 Pixels
150+
'pad':10}, # 10 Pixels
151151
link = {
152152
"source": [0, 0, 1, 2, 5, 4, 3, 5],
153153
"target": [5, 3, 4, 3, 0, 2, 2, 3],

doc/python/smoothing.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ fig.add_trace(go.Scatter(
9797
x=x,
9898
y=signal.savgol_filter(y,
9999
53, # window size used for filtering
100-
3), # order of fitted polynomial
100+
3), # order of fitted polynomial
101101
mode='markers',
102102
marker=dict(
103103
size=6,

doc/python/ternary-contour.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -121,7 +121,7 @@ fig = ff.create_ternary_contour(np.array([Al, Y, Cu]), enthalpy,
121121
fig.show()
122122
```
123123

124-
#### Interpolation mode
124+
#### Interpolation mode
125125

126126
Two modes are available in order to interpolate between data points: interpolation in Cartesian space (`interp_mode='cartesian'`) or interpolation using the [isometric log-ratio transformation](https://link.springer.com/article/10.1023/A:1023818214614) (see also [preprint](https://www.researchgate.net/profile/Leon_Parent2/post/What_is_the_best_approach_for_diagnosing_nutrient_disorders_and_formulating_fertilizer_recommendations/attachment/59d62a69c49f478072e9cf3f/AS%3A272541220835360%401441990298625/download/Egozcue+et+al+2003.pdf)), `interp_mode='ilr'`. The `ilr` transformation preserves metrics in the [simplex](https://en.wikipedia.org/wiki/Simplex) but is not defined on its edges.
127127

doc/python/time-series.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ Time series can be represented using either `plotly.express` functions (`px.line
4040
Plotly auto-sets the axis type to a date format when the corresponding data are either ISO-formatted date strings or if they're a [date pandas column](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html) or [datetime NumPy array](https://docs.scipy.org/doc/numpy/reference/arrays.datetime.html).
4141

4242
```python
43-
# Using plotly.express
43+
# Using plotly.express
4444
import plotly.express as px
4545

4646
import pandas as pd
@@ -51,7 +51,7 @@ fig.show()
5151
```
5252

5353
```python
54-
# Using graph_objects
54+
# Using graph_objects
5555
import plotly.graph_objects as go
5656

5757
import pandas as pd
@@ -101,7 +101,7 @@ fig.add_trace(go.Scatter(
101101
line_color='dimgray',
102102
opacity=0.8))
103103

104-
# Use date string to set xaxis range
104+
# Use date string to set xaxis range
105105
fig.update_layout(xaxis_range=['2016-07-01','2016-12-31'],
106106
title_text="Manually Set Date Range")
107107
fig.show()

doc/python/violin.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ jupyter:
3434
thumbnail: thumbnail/violin.jpg
3535
---
3636

37-
## Violin Plot with Plotly Express
37+
## Violin Plot with Plotly Express
3838

3939
A [violin plot](https://en.wikipedia.org/wiki/Violin_plot) is a statistical representation of numerical data. It is similar to a [box plot](https://plot.ly/python/box-plots/), with the addition of a rotated [kernel density](https://en.wikipedia.org/wiki/Kernel_density_estimation) plot on each side.
4040

@@ -233,7 +233,7 @@ fig.update_layout(
233233
fig.show()
234234
```
235235

236-
#### Ridgeline plot
236+
#### Ridgeline plot
237237

238238
A ridgeline plot ([previously known as Joy Plot](https://serialmentor.com/blog/2017/9/15/goodbye-joyplots)) shows the distribution of a numerical value for several groups. They can be used for visualizing changes in distributions over time or space.
239239

0 commit comments

Comments
 (0)