Skip to content

Commit 9669c41

Browse files
authored
Remove app that uses Boston housing prices dataset
ImportError: `load_boston` has been removed from scikit-learn since version 1.2.
1 parent 6637682 commit 9669c41

File tree

1 file changed

+0
-17
lines changed

1 file changed

+0
-17
lines changed

doc/python/ml-pca.md

-17
Original file line numberDiff line numberDiff line change
@@ -136,23 +136,6 @@ fig.update_traces(diagonal_visible=False)
136136
fig.show()
137137
```
138138

139-
## PCA analysis in Dash
140-
141-
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
142-
143-
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
144-
145-
146-
```python hide_code=true
147-
from IPython.display import IFrame
148-
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
149-
IFrame(snippet_url + 'pca-visualization', width='100%', height=1200)
150-
```
151-
152-
<div style="font-size: 0.9em;"><div style="width: calc(100% - 30px); box-shadow: none; border: thin solid rgb(229, 229, 229);"><div style="padding: 5px;"><div><p><strong>Sign up for Dash Club</strong> → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture.
153-
<u><a href="https://go.plotly.com/dash-club?utm_source=Dash+Club+2022&utm_medium=graphing_libraries&utm_content=inline">Join now</a></u>.</p></div></div></div></div>
154-
155-
156139
## 2D PCA Scatter Plot
157140

158141
In the previous examples, you saw how to visualize high-dimensional PCs. In this example, we show you how to simply visualize the first two principal components of a PCA, by reducing a dataset of 4 dimensions to 2D.

0 commit comments

Comments
 (0)