Skip to content

Commit 9a158eb

Browse files
authored
Merge pull request #4589 from plotly/recent-docs-updates
Merge recent docs updates
2 parents 56ec663 + 6ed004b commit 9a158eb

File tree

2 files changed

+126
-14
lines changed

2 files changed

+126
-14
lines changed

doc/python/bar-charts.md

+50
Original file line numberDiff line numberDiff line change
@@ -304,6 +304,56 @@ fig.update_layout(barmode='stack')
304304
fig.show()
305305
```
306306

307+
### Stacked Bar Chart From Aggregating a DataFrame
308+
309+
Stacked bar charts are a powerful way to present results summarizing categories generated using the Pandas aggregate commands. `pandas.DataFrame.agg` produces a wide data set format incompatible with `px.bar`. Transposing and updating the indexes to achieve `px.bar` compatibility is a somewhat involved option. Here is one straightforward alternative, which presents the aggregated data as a stacked bar using plotly.graph_objects.
310+
311+
```python
312+
from plotly import graph_objects as go
313+
import pandas as pd
314+
315+
# Get one year of gapminder data
316+
url = 'https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv'
317+
df = pd.read_csv(url)
318+
df = df[df['year']==2007]
319+
df["gdp"]=df["pop"]*df['gdpPercap']
320+
321+
322+
# Build the summary of interest
323+
df_summarized = df.groupby("continent", observed=True).agg("sum").reset_index()
324+
325+
df_summarized["percent of world population"]=100*df_summarized["pop"]/df_summarized["pop"].sum()
326+
df_summarized["percent of world GDP"]=100*df_summarized["gdp"]/df_summarized["gdp"].sum()
327+
328+
329+
df = df_summarized[["continent",
330+
"percent of world population",
331+
"percent of world GDP",
332+
]]
333+
334+
# We now have a wide data frame, but it's in the opposite orientation from the one that px is designed to deal with.
335+
# Transposing it and rebuilding the indexes is an option, but iterating through the DF using graph objects is more succinct.
336+
337+
fig=go.Figure()
338+
for category in df_summarized["continent"].values:
339+
fig.add_trace(go.Bar(
340+
x=df.columns[1:],
341+
# We need to get a pandas series that contains just the values to graph;
342+
# We do so by selecting the right row, selecting the right columns
343+
# and then transposing and using iloc to convert to a series
344+
# Here, we assume that the bar element category variable is in column 0
345+
y=list(df.loc[df["continent"]==category][list(df.columns[1:])].transpose().iloc[:,0]),
346+
name=str(category)
347+
348+
349+
)
350+
)
351+
fig.update_layout(barmode="stack")
352+
353+
fig.show()
354+
```
355+
356+
307357
### Bar Chart with Hover Text
308358

309359
```python

doc/python/hover-text-and-formatting.md

+76-14
Original file line numberDiff line numberDiff line change
@@ -283,6 +283,58 @@ print("user_defined hovertemplate:", fig.data[0].hovertemplate)
283283
fig.show()
284284
```
285285

286+
### Specifying the formatting and labeling of custom fields in a Plotly Express figure using a hovertemplate
287+
288+
This example adds custom fields to a Plotly Express figure using the custom_data parameter and then adds a hover template that applies d3 formats to each element of the customdata[n] array and uses HTML to customize the fonts and spacing.
289+
290+
```python
291+
# %%
292+
import plotly.graph_objects as go
293+
import plotly.express as px
294+
import pandas as pd
295+
import math
296+
import numpy as np
297+
298+
data = px.data.gapminder()
299+
df = data[data['year']==2007]
300+
df = df.sort_values(['continent', 'country'])
301+
302+
df.rename(columns={"gdpPercap":'GDP per capita', "lifeExp":'Life Expectancy (years)'}, inplace=True)
303+
304+
fig=px.scatter(df,
305+
x='GDP per capita',
306+
y='Life Expectancy (years)',
307+
color='continent',
308+
size=np.sqrt(df['pop']),
309+
# Specifying data to make available to the hovertemplate
310+
# The px custom_data parameter has an underscore, while the analogous graph objects customdata parameter has no underscore.
311+
# The px custom_data parameter is a list of column names in the data frame, while the graph objects customdata parameter expects a data frame or a numpy array.
312+
custom_data=['country', 'continent', 'pop'],
313+
)
314+
315+
# Plotly express does not have a hovertemplate parameter in the graph creation function, so we apply the template with update_traces
316+
fig.update_traces(
317+
hovertemplate =
318+
"<b>%{customdata[0]}</b><br>" +
319+
"<b>%{customdata[1]}</b><br><br>" +
320+
"GDP per Capita: %{x:$,.0f}<br>" +
321+
"Life Expectation: %{y:.0f}<br>" +
322+
"Population: %{customdata[2]:,.0f}" +
323+
"<extra></extra>",
324+
mode='markers',
325+
marker={'sizemode':'area',
326+
'sizeref':10},
327+
)
328+
329+
fig.update_layout(
330+
xaxis={
331+
'type':'log'},
332+
)
333+
334+
fig.show()
335+
```
336+
337+
286338
### Hover Templates with Mixtures of Period data
287339

288340
*New in v5.0*
@@ -319,7 +371,7 @@ fig.show()
319371

320372
### Advanced Hover Template
321373

322-
The following example shows how to format a hover template.
374+
This produces the same graphic as in "Specifying the formatting and labeling of custom fields in a Plotly Express figure using a hovertemplate" above, but does so with the `customdata` and `text` parameters of `graph_objects`. It shows how to specify columns from a dataframe to include in the customdata array using the df[["col_i", "col_j"]] subsetting notation. It then references those variables using e.g. %{customdata[0]} in the hovertemplate. It includes comments about major differences between the parameters used by `graph_objects` and `plotly.express`.
323375

324376
```python
325377
import plotly.graph_objects as go
@@ -343,21 +395,31 @@ continent_data = {continent:df_2007.query("continent == '%s'" %continent)
343395

344396
fig = go.Figure()
345397

346-
for continent_name, continent in continent_data.items():
347-
fig.add_trace(go.Scatter(
348-
x=continent['gdpPercap'],
349-
y=continent['lifeExp'],
350-
name=continent_name,
351-
text=continent['continent'],
352-
hovertemplate=
353-
"<b>%{text}</b><br><br>" +
354-
"GDP per Capita: %{x:$,.0f}<br>" +
355-
"Life Expectation: %{y:.0%}<br>" +
356-
"Population: %{marker.size:,}" +
357-
"<extra></extra>",
358-
marker_size=continent['size'],
398+
for continent_name, df in continent_data.items():
399+
fig.add_trace(
400+
go.Scatter(
401+
x=df['gdpPercap'],
402+
y=df['lifeExp'],
403+
marker_size=df['size'],
404+
name=continent_name,
405+
406+
# The next three parameters specify the hover text
407+
# Text supports just one customized field per trace
408+
# and is implemented here with text=df['continent'],
409+
# Custom data supports multiple fields through numeric indices in the hovertemplate
410+
# In we weren't using the text parameter in our example,
411+
# we could instead add continent as a third customdata field.
412+
customdata=df[['country','pop']],
413+
hovertemplate=
414+
"<b>%{customdata[0]}</b><br>" +
415+
"<b>%{text}</b><br><br>" +
416+
"GDP per Capita: %{x:$,.0f}<br>" +
417+
"Life Expectancy: %{y:.0f}<br>" +
418+
"Population: %{customdata[1]:,.0f}" +
419+
"<extra></extra>",
359420
))
360421

422+
361423
fig.update_traces(
362424
mode='markers',
363425
marker={'sizemode':'area',

0 commit comments

Comments
 (0)