You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
### Stacked Bar Chart From Aggregating a DataFrame
308
+
309
+
Stacked bar charts are a powerful way to present results summarizing categories generated using the Pandas aggregate commands. `pandas.DataFrame.agg` produces a wide data set format incompatible with `px.bar`. Transposing and updating the indexes to achieve `px.bar` compatibility is a somewhat involved option. Here is one straightforward alternative, which presents the aggregated data as a stacked bar using plotly.graph_objects.
### Specifying the formatting and labeling of custom fields in a Plotly Express figure using a hovertemplate
287
+
288
+
This example adds custom fields to a Plotly Express figure using the custom_data parameter and then adds a hover template that applies d3 formats to each element of the customdata[n] array and uses HTML to customize the fonts and spacing.
289
+
290
+
```python
291
+
# %%
292
+
import plotly.graph_objects as go
293
+
import plotly.express as px
294
+
import pandas as pd
295
+
import math
296
+
import numpy as np
297
+
298
+
data = px.data.gapminder()
299
+
df = data[data['year']==2007]
300
+
df = df.sort_values(['continent', 'country'])
301
+
302
+
df.rename(columns={"gdpPercap":'GDP per capita', "lifeExp":'Life Expectancy (years)'}, inplace=True)
303
+
304
+
fig=px.scatter(df,
305
+
x='GDP per capita',
306
+
y='Life Expectancy (years)',
307
+
color='continent',
308
+
size=np.sqrt(df['pop']),
309
+
# Specifying data to make available to the hovertemplate
310
+
# The px custom_data parameter has an underscore, while the analogous graph objects customdata parameter has no underscore.
311
+
# The px custom_data parameter is a list of column names in the data frame, while the graph objects customdata parameter expects a data frame or a numpy array.
312
+
custom_data=['country', 'continent', 'pop'],
313
+
)
314
+
315
+
# Plotly express does not have a hovertemplate parameter in the graph creation function, so we apply the template with update_traces
316
+
fig.update_traces(
317
+
hovertemplate=
318
+
"<b>%{customdata[0]}</b><br>"+
319
+
"<b>%{customdata[1]}</b><br><br>"+
320
+
"GDP per Capita: %{x:$,.0f}<br>"+
321
+
"Life Expectation: %{y:.0f}<br>"+
322
+
"Population: %{customdata[2]:,.0f}"+
323
+
"<extra></extra>",
324
+
mode='markers',
325
+
marker={'sizemode':'area',
326
+
'sizeref':10},
327
+
)
328
+
329
+
fig.update_layout(
330
+
xaxis={
331
+
'type':'log'},
332
+
)
333
+
334
+
fig.show()
335
+
```
336
+
337
+
286
338
### Hover Templates with Mixtures of Period data
287
339
288
340
*New in v5.0*
@@ -319,7 +371,7 @@ fig.show()
319
371
320
372
### Advanced Hover Template
321
373
322
-
The following example shows how to format a hover template.
374
+
This produces the same graphic as in "Specifying the formatting and labeling of custom fields in a Plotly Express figure using a hovertemplate" above, but does so with the `customdata` and `text` parameters of `graph_objects`. It shows how to specify columns from a dataframe to include in the customdata array using the df[["col_i", "col_j"]] subsetting notation. It then references those variables using e.g. %{customdata[0]} in the hovertemplate. It includes comments about major differences between the parameters used by `graph_objects` and `plotly.express`.
0 commit comments