Skip to content

Commit 9d39e35

Browse files
Merge pull request #2937 from plotly/add-dash-snippets
Add 5 new dash snippets
2 parents 6c56e74 + 039ef09 commit 9d39e35

5 files changed

+82
-17
lines changed

doc/python/creating-and-updating-figures.md

+16-3
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ jupyter:
66
extension: .md
77
format_name: markdown
88
format_version: '1.2'
9-
jupytext_version: 1.3.2
9+
jupytext_version: 1.6.0
1010
kernelspec:
1111
display_name: Python 3
1212
language: python
@@ -20,7 +20,7 @@ jupyter:
2020
name: python
2121
nbconvert_exporter: python
2222
pygments_lexer: ipython3
23-
version: 3.7.0
23+
version: 3.7.6
2424
plotly:
2525
description: Creating and Updating Figures with Plotly's Python graphing library
2626
display_as: file_settings
@@ -127,6 +127,19 @@ print("JSON Representation of A Graph Object:\n\n" + str(fig.to_json()))
127127
print("\n\n")
128128
```
129129

130+
### Representing Figures in Dash
131+
132+
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
133+
134+
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
135+
136+
137+
```python hide_code=true
138+
from IPython.display import IFrame
139+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
140+
IFrame(snippet_url + 'figure-structure', width='100%', height=630)
141+
```
142+
130143
### Creating Figures
131144

132145
This section summarizes several ways to create new graph object figures with the `plotly.py` graphing library.
@@ -652,4 +665,4 @@ fig.data[0].marker.line.width = 4
652665
fig.data[0].marker.line.color = "black"
653666

654667
fig.show()
655-
```
668+
```

doc/python/distplot.md

+17-4
Original file line numberDiff line numberDiff line change
@@ -5,8 +5,8 @@ jupyter:
55
text_representation:
66
extension: .md
77
format_name: markdown
8-
format_version: '1.1'
9-
jupytext_version: 1.1.1
8+
format_version: '1.2'
9+
jupytext_version: 1.6.0
1010
kernelspec:
1111
display_name: Python 3
1212
language: python
@@ -20,7 +20,7 @@ jupyter:
2020
name: python
2121
nbconvert_exporter: python
2222
pygments_lexer: ipython3
23-
version: 3.6.7
23+
version: 3.7.6
2424
plotly:
2525
description: How to make interactive Distplots in Python with Plotly.
2626
display_as: statistical
@@ -56,6 +56,19 @@ fig = px.histogram(df, x="total_bill", y="tip", color="sex",
5656
fig.show()
5757
```
5858

59+
### Combined statistical representations in Dash
60+
61+
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
62+
63+
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
64+
65+
66+
```python hide_code=true
67+
from IPython.display import IFrame
68+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
69+
IFrame(snippet_url + 'distplot', width='100%', height=630)
70+
```
71+
5972
## Combined statistical representations with distplot figure factory
6073

6174
The distplot [figure factory](/python/figure-factories/) displays a combination of statistical representations of numerical data, such as histogram, kernel density estimation or normal curve, and rug plot.
@@ -287,4 +300,4 @@ fig.show()
287300
#### Reference
288301

289302

290-
For more info on `ff.create_distplot()`, see the [full function reference](https://plotly.com/python-api-reference/generated/plotly.figure_factory.create_distplot.html)
303+
For more info on `ff.create_distplot()`, see the [full function reference](https://plotly.com/python-api-reference/generated/plotly.figure_factory.create_distplot.html)

doc/python/filled-area-plots.md

+17-4
Original file line numberDiff line numberDiff line change
@@ -5,8 +5,8 @@ jupyter:
55
text_representation:
66
extension: .md
77
format_name: markdown
8-
format_version: '1.1'
9-
jupytext_version: 1.1.1
8+
format_version: '1.2'
9+
jupytext_version: 1.6.0
1010
kernelspec:
1111
display_name: Python 3
1212
language: python
@@ -20,7 +20,7 @@ jupyter:
2020
name: python
2121
nbconvert_exporter: python
2222
pygments_lexer: ipython3
23-
version: 3.6.7
23+
version: 3.7.6
2424
plotly:
2525
description: How to make filled area plots in Python with Plotly.
2626
display_as: basic
@@ -49,6 +49,19 @@ fig = px.area(df, x="year", y="pop", color="continent",
4949
fig.show()
5050
```
5151

52+
## Filled area plot in Dash
53+
54+
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
55+
56+
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
57+
58+
59+
```python hide_code=true
60+
from IPython.display import IFrame
61+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
62+
IFrame(snippet_url + 'filled-area-plots', width='100%', height=630)
63+
```
64+
5265
### Filled area chart with plotly.graph_objects
5366

5467
#### Basic Overlaid Area Chart
@@ -212,4 +225,4 @@ fig.show()
212225

213226
See https://plotly.com/python/reference/scatter/#scatter-line
214227
and https://plotly.com/python/reference/scatter/#scatter-fill
215-
for more information and attribute options!
228+
for more information and attribute options!

doc/python/ml-regression.md

+16-3
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ jupyter:
66
extension: .md
77
format_name: markdown
88
format_version: '1.2'
9-
jupytext_version: 1.4.2
9+
jupytext_version: 1.6.0
1010
kernelspec:
1111
display_name: Python 3
1212
language: python
@@ -20,7 +20,7 @@ jupyter:
2020
name: python
2121
nbconvert_exporter: python
2222
pygments_lexer: ipython3
23-
version: 3.7.7
23+
version: 3.7.6
2424
plotly:
2525
description: Visualize regression in scikit-learn with Plotly.
2626
display_as: ai_ml
@@ -91,6 +91,19 @@ fig.add_traces(go.Scatter(x=x_range, y=y_range, name='Regression Fit'))
9191
fig.show()
9292
```
9393

94+
### ML Regression in Dash
95+
96+
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
97+
98+
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
99+
100+
101+
```python hide_code=true
102+
from IPython.display import IFrame
103+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
104+
IFrame(snippet_url + 'ml-regression', width='100%', height=630)
105+
```
106+
94107
## Model generalization on unseen data
95108

96109
With `go.Scatter`, you can easily color your plot based on a predefined data split. By coloring the training and the testing data points with different colors, you can easily see if whether the model generalizes well to the test data or not.
@@ -534,4 +547,4 @@ Learn more about the Machine Learning models used in this tutorial:
534547
Other tutorials that inspired this notebook:
535548
* https://seaborn.pydata.org/examples/residplot.html
536549
* https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html
537-
* http://www.scikit-yb.org/zh/latest/api/regressor/peplot.html
550+
* http://www.scikit-yb.org/zh/latest/api/regressor/peplot.html

doc/python/tick-formatting.md

+16-3
Original file line numberDiff line numberDiff line change
@@ -5,8 +5,8 @@ jupyter:
55
text_representation:
66
extension: .md
77
format_name: markdown
8-
format_version: '1.1'
9-
jupytext_version: 1.1.1
8+
format_version: '1.2'
9+
jupytext_version: 1.6.0
1010
kernelspec:
1111
display_name: Python 3
1212
language: python
@@ -20,7 +20,7 @@ jupyter:
2020
name: python
2121
nbconvert_exporter: python
2222
pygments_lexer: ipython3
23-
version: 3.6.8
23+
version: 3.7.6
2424
plotly:
2525
description: How to format axes ticks in Python with Plotly.
2626
display_as: file_settings
@@ -80,6 +80,19 @@ fig.update_layout(
8080
fig.show()
8181
```
8282

83+
### Dynamic tickmode in Dash
84+
85+
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
86+
87+
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
88+
89+
90+
```python hide_code=true
91+
from IPython.display import IFrame
92+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
93+
IFrame(snippet_url + 'tick-formatting', width='100%', height=630)
94+
```
95+
8396
#### Using Tickformat Attribute
8497

8598

0 commit comments

Comments
 (0)