Skip to content

Commit bb4a47c

Browse files
Merge pull request #3073 from c-chaitanya/doc-prod
fixing documents
2 parents 62a0ad1 + 1b81b0b commit bb4a47c

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

44 files changed

+70
-70
lines changed

doc/python/2D-Histogram.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -137,7 +137,7 @@ fig = go.Figure(go.Histogram2d(x=x, y=y, histnorm='probability',
137137
fig.show()
138138
```
139139
### Sharing bin settings between 2D Histograms
140-
This example shows how to use [bingroup](https://plotly.com/python/reference/histogram/#histogram-bingroup) attribute to have a compatible bin settings for both histograms. To define `start`, `end` and `size` value of x-axis and y-axis seperatly, set [ybins](https://plotly.com/python/reference/histogram2dcontour/#histogram2dcontour-ybins) and `xbins`.
140+
This example shows how to use [bingroup](https://plotly.com/python/reference/histogram/#histogram-bingroup) attribute to have a compatible bin settings for both histograms. To define `start`, `end` and `size` value of x-axis and y-axis separately, set [ybins](https://plotly.com/python/reference/histogram2dcontour/#histogram2dcontour-ybins) and `xbins`.
141141

142142
```python
143143
import plotly.graph_objects as go

doc/python/3d-isosurface-plots.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@ fig = go.Figure(data=go.Isosurface(
130130
fig.show()
131131
```
132132

133-
#### Isosurface with Addtional Slices
133+
#### Isosurface with Additional Slices
134134

135135
Here we visualize slices parallel to the axes on top of isosurfaces. For a clearer visualization, the `fill` ratio of isosurfaces is decreased below 1 (completely filled).
136136

@@ -235,4 +235,4 @@ fig.show()
235235
```
236236

237237
#### Reference
238-
See https://plotly.com/python/reference/isosurface/ for more information and chart attribute options!
238+
See https://plotly.com/python/reference/isosurface/ for more information and chart attribute options!

doc/python/annotated-heatmap.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ fig.show()
8282
```
8383

8484
#### Custom Text and X & Y Labels
85-
set `annotation_text` to a matrix with the same dimmensions as `z`
85+
set `annotation_text` to a matrix with the same dimensions as `z`
8686

8787
```python
8888
import plotly.figure_factory as ff
@@ -203,4 +203,4 @@ fig.show()
203203

204204
#### Reference
205205

206-
For more info on Plotly heatmaps, see: https://plotly.com/python/reference/heatmap/.<br> For more info on using colorscales with Plotly see: https://plotly.com/python/heatmap-and-contour-colorscales/ <br>For more info on `ff.create_annotated_heatmap()`, see the [full function reference](https://plotly.com/python-api-reference/generated/plotly.figure_factory.create_annotated_heatmap.html#plotly.figure_factory.create_annotated_heatmap)
206+
For more info on Plotly heatmaps, see: https://plotly.com/python/reference/heatmap/.<br> For more info on using colorscales with Plotly see: https://plotly.com/python/heatmap-and-contour-colorscales/ <br>For more info on `ff.create_annotated_heatmap()`, see the [full function reference](https://plotly.com/python-api-reference/generated/plotly.figure_factory.create_annotated_heatmap.html#plotly.figure_factory.create_annotated_heatmap)

doc/python/axes.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ The axis type is auto-detected by looking at data from the first [trace](/python
6666

6767
### Forcing an axis to be categorical
6868

69-
It is possible to force the axis type by setting explicitely `xaxis_type`. In the example below the automatic X axis type would be `linear` (because there are not more than twice as many unique strings as unique numbers) but we force it to be `category`.
69+
It is possible to force the axis type by setting explicitly `xaxis_type`. In the example below the automatic X axis type would be `linear` (because there are not more than twice as many unique strings as unique numbers) but we force it to be `category`.
7070

7171
```python
7272
import plotly.express as px
@@ -139,7 +139,7 @@ IFrame(snippet_url + 'axes', width='100%', height=630)
139139

140140
#### Moving Tick Labels Inside the Plot
141141

142-
The `ticklabelposition` attribute moves tick labels inside the plotting area, and modifies the auto-range behaviour to accomodate the labels.
142+
The `ticklabelposition` attribute moves tick labels inside the plotting area, and modifies the auto-range behaviour to accommodate the labels.
143143

144144
```python
145145
import plotly.express as px

doc/python/builtin-colorscales.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ jupyter:
2323
version: 3.7.6
2424
plotly:
2525
description: A reference for the built-in named continuous (sequential, diverging
26-
and cylclical) color scales in Plotly.
26+
and cyclical) color scales in Plotly.
2727
display_as: file_settings
2828
has_thumbnail: true
2929
ipynb: ~notebook_demo/187

doc/python/carpet-contour.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ jupyter:
3737

3838
### Basic Carpet Plot
3939

40-
Set the `x` and `y` coorindates, using `x` and `y` attributes. If `x` coorindate values are ommitted a cheater plot will be created. To save parameter values use `a` and `b` attributes. To make changes to the axes, use `aaxis` or `baxis` attributes. For a more detailed list of axes attributes refer to [python reference](https://plotly.com/python/reference/carpet/#carpet-aaxis).
40+
Set the `x` and `y` coordinates, using `x` and `y` attributes. If `x` coordinate values are omitted a cheater plot will be created. To save parameter values use `a` and `b` attributes. To make changes to the axes, use `aaxis` or `baxis` attributes. For a more detailed list of axes attributes refer to [python reference](https://plotly.com/python/reference/carpet/#carpet-aaxis).
4141

4242
```python
4343
import plotly.graph_objects as go
@@ -286,4 +286,4 @@ fig.show()
286286

287287
### Reference
288288

289-
See https://plotly.com/python/reference/contourcarpet/ for more information and chart attribute options!
289+
See https://plotly.com/python/reference/contourcarpet/ for more information and chart attribute options!

doc/python/carpet-plot.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ jupyter:
3939
### Set X and Y Coordinates
4040

4141

42-
To set the `x` and `y` coordinates use `x` and `y` attributes. If `x` coordindate values are ommitted a cheater plot will be created. The plot below has a `y` array specified but requires `a` and `b` parameter values before an axis may be plotted.
42+
To set the `x` and `y` coordinates use `x` and `y` attributes. If `x` coordinate values are omitted a cheater plot will be created. The plot below has a `y` array specified but requires `a` and `b` parameter values before an axis may be plotted.
4343
<!-- #endregion -->
4444

4545
```python
@@ -189,4 +189,4 @@ To add points and lines see [Carpet Scatter Plots](https://plotly.com/python/car
189189

190190
### Reference
191191

192-
See https://plotly.com/python/reference/carpet/ for more information and chart attribute options!
192+
See https://plotly.com/python/reference/carpet/ for more information and chart attribute options!

doc/python/categorical-axes.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ This page shows examples of how to configure [2-dimensional Cartesian axes](/pyt
4040

4141
The different types of Cartesian axes are configured via the `xaxis.type` or `yaxis.type` attribute, which can take on the following values:
4242

43-
- `'linear'` (see the [linear axes tutoria](/python/axes/))
43+
- `'linear'` (see the [linear axes tutorial](/python/axes/))
4444
- `'log'` (see the [log plot tutorial](/python/log-plots/))
4545
- `'date'` (see the [tutorial on timeseries](/python/time-series/))
4646
- `'category'` see below
@@ -55,7 +55,7 @@ The axis type is auto-detected by looking at data from the first [trace](/python
5555

5656
### Forcing an axis to be categorical
5757

58-
It is possible to force the axis type by setting explicitely `xaxis_type`. In the example below the automatic X axis type would be `linear` (because there are not more than twice as many unique strings as unique numbers) but we force it to be `category`.
58+
It is possible to force the axis type by setting explicitly `xaxis_type`. In the example below the automatic X axis type would be `linear` (because there are not more than twice as many unique strings as unique numbers) but we force it to be `category`.
5959

6060
```python
6161
import plotly.express as px

doc/python/colorscales.md

+5-5
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ jupyter:
2222
pygments_lexer: ipython3
2323
version: 3.7.6
2424
plotly:
25-
description: How to set, create and control continous color scales and color bars
25+
description: How to set, create and control continuous color scales and color bars
2626
in scatter, bar, map and heatmap figures.
2727
display_as: file_settings
2828
has_thumbnail: true
@@ -46,7 +46,7 @@ In the same way as the X or Y position of a mark in cartesian coordinates can be
4646
This document explains the following four continuous-color-related concepts:
4747

4848
- **color scales** represent a mapping between the range 0 to 1 and some color domain within which colors are to be interpolated (unlike [discrete color sequences](/python/discrete-color/) which are never interpolated). Color scale defaults depend on the `layout.colorscales` attributes of the active [template](/python/templates/), and can be explicitly specified using the `color_continuous_scale` argument for many [Plotly Express](/python/plotly-express/) functions or the `colorscale` argument in various `graph_objects` such as `layout.coloraxis` or `marker.colorscale` in `go.Scatter` traces or `colorscale` in `go.Heatmap` traces. For example `[(0,"blue"), (1,"red")]` is a simple color scale that interpolated between blue and red via purple, which can also be implicitly represented as `["blue", "red"]` and happens to be one of the [built-in color scales](/python/builtin-colorscales) and therefore referred to as `"bluered"` or `plotly.colors.sequential.Bluered`.
49-
- **color ranges** represent the minimum to maximum range of data to be mapped onto the 0 to 1 input range of the color scale. Color ranges default to the range of the input data and can be explicitly specified using either the `range_color` or `color_continous_midpoint` arguments for many Plotly Express functions, or `cmin`/`cmid`/`cmax` or `zmin`/`zmid`/`zmax` for various `graph_objects` such as `layout.coloraxis.cmin` or `marker.cmin` in `go.Scatter` traces or `cmin` in `go.Heatmap` traces. For example, if a color range of `[100, 200]` is used with the color scale above, then any mark with a color value of 100 or less will be blue, and 200 or more will be red. Marks with values in between will be various shades of purple.
49+
- **color ranges** represent the minimum to maximum range of data to be mapped onto the 0 to 1 input range of the color scale. Color ranges default to the range of the input data and can be explicitly specified using either the `range_color` or `color_continuous_midpoint` arguments for many Plotly Express functions, or `cmin`/`cmid`/`cmax` or `zmin`/`zmid`/`zmax` for various `graph_objects` such as `layout.coloraxis.cmin` or `marker.cmin` in `go.Scatter` traces or `cmin` in `go.Heatmap` traces. For example, if a color range of `[100, 200]` is used with the color scale above, then any mark with a color value of 100 or less will be blue, and 200 or more will be red. Marks with values in between will be various shades of purple.
5050
- **color bars** are legend-like visible representations of the color range and color scale with optional tick labels and tick marks. Color bars can be configured with attributes inside `layout.coloraxis.colorbar` or in places like `marker.colorbar` in `go.Scatter` traces or `colorbar` in `go.Heatmap` traces.
5151
- **color axes** connect color scales, color ranges and color bars to a trace's data. By default, any colorable attribute in a trace is attached to its own local color axis, but color axes may also be shared across attributes and traces by setting e.g. `marker.coloraxis` in `go.Scatter` traces or `coloraxis` in `go.Heatmap` traces. Local color axis attributes are configured within traces e.g. `marker.showscale` whereas shared color axis attributes are configured within the Layout e.g. `layout.coloraxis.showscale`.
5252

@@ -60,7 +60,7 @@ For example, in the `tips` dataset, the `size` column contains numbers:
6060
import plotly.express as px
6161
df = px.data.tips()
6262
fig = px.scatter(df, x="total_bill", y="tip", color="size",
63-
title="Numeric 'size' values mean continous color")
63+
title="Numeric 'size' values mean continuous color")
6464

6565
fig.show()
6666
```
@@ -85,7 +85,7 @@ df = px.data.tips()
8585
df["size"] = df["size"].astype(str)
8686
df["size"] = df["size"].astype(float)
8787
fig = px.scatter(df, x="total_bill", y="tip", color="size",
88-
title="Numeric 'size' values mean continous color")
88+
title="Numeric 'size' values mean continuous color")
8989

9090
fig.show()
9191
```
@@ -151,7 +151,7 @@ fig = px.imshow(data, color_continuous_scale=px.colors.sequential.Cividis_r)
151151
fig.show()
152152
```
153153

154-
### Explicity Constructing a Color scale
154+
### Explicitly Constructing a Color scale
155155

156156
The Plotly Express `color_continuous_scale` argument accepts explicitly-constructed color scales as well:
157157

doc/python/compare-webgl-svg.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ jupyter:
3636
### Comparing Scatter Plots with 75,000 Random Points
3737

3838

39-
Now in Ploty you can implement WebGL with `Scattergl()` in place of `Scatter()` <br>
39+
Now in Plotly you can implement WebGL with `Scattergl()` in place of `Scatter()` <br>
4040
for increased speed, improved interactivity, and the ability to plot even more data!
4141

4242

doc/python/configuration-options.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -252,7 +252,7 @@ fig.show(config={
252252

253253
### Add optional shape-drawing buttons to modebar
254254

255-
Some modebar buttons of Cartesian plots are optional and have to be added explictly, using the `modeBarButtonsToAdd` config attribute. These buttons are used for drawing or erasing shapes. See [the tutorial on shapes and shape drawing](python/shapes#drawing-shapes-on-cartesian-plots) for more details.
255+
Some modebar buttons of Cartesian plots are optional and have to be added explicitly, using the `modeBarButtonsToAdd` config attribute. These buttons are used for drawing or erasing shapes. See [the tutorial on shapes and shape drawing](python/shapes#drawing-shapes-on-cartesian-plots) for more details.
256256

257257
```python
258258
import plotly.graph_objects as go

doc/python/county-choropleth.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@ conda install geopandas
5959
<!-- #endraw -->
6060

6161
#### FIPS and Values
62-
Every US state and county has an assined ID regulated by the US Federal Government under the term FIPS (Federal Information Processing Standards) codes. There are state codes and county codes: the 2016 state and county FIPS codes can be found at the [US Census Website](https://www.census.gov/geographies/reference-files/2016/demo/popest/2016-fips.html).
62+
Every US state and county has an assigned ID regulated by the US Federal Government under the term FIPS (Federal Information Processing Standards) codes. There are state codes and county codes: the 2016 state and county FIPS codes can be found at the [US Census Website](https://www.census.gov/geographies/reference-files/2016/demo/popest/2016-fips.html).
6363

6464
Combine a state FIPS code (eg. `06` for California) with a county FIPS code of the state (eg. `059` for Orange county) and this new state-county FIPS code (`06059`) uniquely refers to the specified state and county.
6565

@@ -197,7 +197,7 @@ Below is a choropleth that uses several other parameters. For a full list of all
197197

198198
- `simplify_county` determines the simplification factor for the counties. The larger the number, the fewer vertices and edges each polygon has. See http://toblerity.org/shapely/manual.html#object.simplify for more information.
199199
- `simplify_state` simplifies the state outline polygon. See the [documentation](http://toblerity.org/shapely/manual.html#object.simplify) for more information.
200-
Default for both `simplify_county` and `simplif_state` is 0.02
200+
Default for both `simplify_county` and `simplify_state` is 0.02
201201

202202
Note: This choropleth uses a divergent categorical colorscale. See http://react-colorscales.getforge.io/ for other cool colorscales.
203203

@@ -277,4 +277,4 @@ Also see Mapbox county choropleths made in Python: [https://plotly.com/python/ma
277277

278278
### Reference
279279

280-
For more info on `ff.create_choropleth()`, see the [full function reference](https://plotly.com/python-api-reference/generated/plotly.figure_factory.create_choropleth.html)
280+
For more info on `ff.create_choropleth()`, see the [full function reference](https://plotly.com/python-api-reference/generated/plotly.figure_factory.create_choropleth.html)

doc/python/creating-and-updating-figures.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ The `plotly` Python package exists to create, manipulate and [render](/python/re
4343
4444
### Figures As Dictionaries
4545

46-
At a low level, figures can be represented as dictionaries and displayed using functions from the `plotly.io` module. The `fig` dictonary in the example below describes a figure. It contains a single `bar` trace and a title.
46+
At a low level, figures can be represented as dictionaries and displayed using functions from the `plotly.io` module. The `fig` dictionary in the example below describes a figure. It contains a single `bar` trace and a title.
4747

4848
```python
4949
fig = dict({

doc/python/custom-buttons.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -348,7 +348,7 @@ fig.show()
348348

349349
#### Update Button
350350
The `"update"` method should be used when modifying the data and layout sections of the graph.<br>
351-
This example demonstrates how to update which traces are displayed while simulaneously updating layout attributes such as the chart title and annotations.
351+
This example demonstrates how to update which traces are displayed while simultaneously updating layout attributes such as the chart title and annotations.
352352

353353
```python
354354
import plotly.graph_objects as go

doc/python/dendrogram.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ jupyter:
3535

3636
#### Basic Dendrogram
3737

38-
A [dendrogram](https://en.wikipedia.org/wiki/Dendrogram) is a diagram representing a tree. The [figure factory](/python/figure-factories/) called `create_dendrogram` performs [hierachical clustering](https://en.wikipedia.org/wiki/Hierarchical_clustering) on data and represents the resulting tree. Values on the tree depth axis correspond to distances between clusters.
38+
A [dendrogram](https://en.wikipedia.org/wiki/Dendrogram) is a diagram representing a tree. The [figure factory](/python/figure-factories/) called `create_dendrogram` performs [hierarchical clustering](https://en.wikipedia.org/wiki/Hierarchical_clustering) on data and represents the resulting tree. Values on the tree depth axis correspond to distances between clusters.
3939

4040
Dendrogram plots are commonly used in computational biology to show the clustering of genes or samples, sometimes in the margin of heatmaps.
4141

@@ -178,4 +178,4 @@ fig.show()
178178

179179
### Reference
180180

181-
For more info on `ff.create_dendrogram()`, see the [full function reference](https://plotly.com/python-api-reference/generated/plotly.figure_factory.create_dendrogram.html)
181+
For more info on `ff.create_dendrogram()`, see the [full function reference](https://plotly.com/python-api-reference/generated/plotly.figure_factory.create_dendrogram.html)

doc/python/discrete-color.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ In the same way as the X or Y position of a mark in cartesian coordinates can be
4545
This document explains the following discrete-color-related concepts:
4646

4747
- **color sequences** are lists of colors to be mapped onto discrete data values. No interpolation occurs when using color sequences, unlike with [continuous color scales](/python/colorscales/), and each color is used as-is. Color sequence defaults depend on the `layout.colorway` attribute of the active [template](/python/templates/), and can be explicitly specified using the `color_discrete_sequence` argument for many [Plotly Express](/python/plotly-express/) functions.
48-
- **legends** are visible representations of the mapping between colors and data values. Legend markers also change shape when used with various kinds of traces, such as symbols or lines for scatter-like traces. [Legends are configurable](/python/legend/) under the `layout.legend` attribute. Legends are the discrete equivalent of [continous color bars](/python/colorscales/)
48+
- **legends** are visible representations of the mapping between colors and data values. Legend markers also change shape when used with various kinds of traces, such as symbols or lines for scatter-like traces. [Legends are configurable](/python/legend/) under the `layout.legend` attribute. Legends are the discrete equivalent of [continuous color bars](/python/colorscales/)
4949

5050
### Discrete Color with Plotly Express
5151

@@ -68,7 +68,7 @@ The `size` column, however, contains numbers:
6868
import plotly.express as px
6969
df = px.data.tips()
7070
fig = px.scatter(df, x="total_bill", y="tip", color="size",
71-
title="Numeric 'size' values mean continous color")
71+
title="Numeric 'size' values mean continuous color")
7272

7373
fig.show()
7474
```
@@ -94,7 +94,7 @@ df["size"] = df["size"].astype(str) #convert to string
9494
df["size"] = df["size"].astype(float) #convert back to numeric
9595

9696
fig = px.scatter(df, x="total_bill", y="tip", color="size",
97-
title="Numeric 'size' values mean continous color")
97+
title="Numeric 'size' values mean continuous color")
9898

9999
fig.show()
100100
```

0 commit comments

Comments
 (0)