@@ -115,6 +115,8 @@ A range slider is a small subplot-like area below a plot which allows users to p
115
115
``` python
116
116
import plotly.graph_objects as go
117
117
import pandas as pd
118
+ import plotly.express as px
119
+
118
120
df = pd.read_csv(' https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv' )
119
121
120
122
fig = px.line(df, x = ' Date' , y = ' AAPL.High' , title = ' Time Series with Rangeslider' )
@@ -130,6 +132,8 @@ Range selector buttons are special controls that work well with time series and
130
132
``` python
131
133
import plotly.graph_objects as go
132
134
import pandas as pd
135
+ import plotly.express as px
136
+
133
137
df = pd.read_csv(' https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv' )
134
138
135
139
fig = px.line(df, x = ' Date' , y = ' AAPL.High' , title = ' Time Series with Range Slider and Selectors' )
@@ -189,6 +193,8 @@ The `rangebreaks` attribute available on x- and y-axes of type `date` can be use
189
193
``` python
190
194
import plotly.express as px
191
195
import pandas as pd
196
+ import plotly.express as px
197
+
192
198
df = pd.read_csv(' https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv' )
193
199
194
200
fig = px.scatter(df, x = ' Date' , y = ' AAPL.High' , range_x = [' 2015-12-01' , ' 2016-01-15' ],
@@ -199,6 +205,8 @@ fig.show()
199
205
``` python
200
206
import plotly.express as px
201
207
import pandas as pd
208
+ import plotly.express as px
209
+
202
210
df = pd.read_csv(' https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv' )
203
211
204
212
fig = px.scatter(df, x = ' Date' , y = ' AAPL.High' , range_x = [' 2015-12-01' , ' 2016-01-15' ],
0 commit comments