-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathchange_format.py
35 lines (33 loc) · 1.47 KB
/
change_format.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import os
import glob
import numpy as np
import pandas as pd
# dir and file
data_path = "./result/"
csv_files = glob.glob(os.path.join(data_path, "nc_*.csv"))
# loop through each CSV file and process it
for file in csv_files:
# obtain size
size = int(file.split("_")[2].split("-")[0])
# fixed params
rng = np.random.RandomState(17)
Q = 0.01 * np.diag(rng.random(size=size))
p = 0.1 * rng.random(size=size)
A = rng.normal(scale=0.1, size=(size, size))
# read the CSV file into a pandas DataFrame
df = pd.read_csv(file)
# check if column exists
if "Constraints Viol" in df.columns:
# convert list
df["Param"] = df["Param"].apply(lambda x:eval(x))
df["Sol"] = df["Sol"].apply(lambda x: eval(x) if pd.notna(x) else None)
# compute violations
df["Violations"] = df.apply(lambda row: np.maximum(0, A @ np.array(row["Sol"]) - np.array(row["Param"]))
if row["Sol"] is not None else None, axis=1)
# calculate violation metrics
df["Mean Violation"] = df["Violations"].apply(lambda viol: np.mean(viol) if viol is not None else None)
df["Max Violation"] = df["Violations"].apply(lambda viol: np.max(viol) if viol is not None else None)
df["Num Violations"] = df["Violations"].apply(lambda viol: np.sum(viol > 1e-6) if viol is not None else None)
# drop unnecessary columns
df = df.drop(columns=["Constraints Viol", "Violations"])
df.to_csv(file)