This folder holds the code for the manipulation RL experiment
Please skip if you already installed the required packages when running the code under rot_est
- Install anaconda
- Create and activate conda environment
conda create --name equi python=3.9 conda activate equi
- Install PyTorch (Recommended: pytorch==1.10.2, torchvision==0.11.3):
conda install pytorch==1.10.2 torchvision==0.11.3 torchaudio==0.10.2 -c pytorch
- Install other required packages
pip3 install -r requirements.txt
python main.py --env=close_loop_block_picking --num_objects=1 --alg=sacfd --model=equi_both_d --max_train_step=5000 --planner_episode=50 --device=cuda:1 --view_type=camera_side_rgbd --aug=t --seed=1
- CNN + RAD:
python main.py --env=close_loop_block_picking --num_objects=1 --alg=sacfd --model=cnn_sim --max_train_step=5000 --planner_episode=50 --device=cuda:1 --view_type=camera_side_rgbd --aug=t --seed=1
- CNN + DrQ:
python main.py --env=close_loop_block_picking --num_objects=1 --alg=sacfd_drq --model=cnn_sim --max_train_step=5000 --planner_episode=50 --device=cuda:1 --view_type=camera_side_rgbd --aug=f --seed=1
- FERM:
python main.py --env=close_loop_block_picking --num_objects=1 --alg=curl_sacfd --model=cnn_sim_2 --max_train_step=5000 --planner_episode=50 --device=cuda:1 --view_type=camera_side_rgbd --aug=f --seed=1
- SEN + RAD:
python main.py --env=close_loop_block_picking --num_objects=1 --alg=sacfd --model=sen_fc --max_train_step=5000 --planner_episode=50 --device=cuda:1 --view_type=camera_side_rgbd --aug=t --seed=1
Replace --env=close_loop_block_picking --num_objects=1
with:
- Block Pushing:
--env=close_loop_block_pushing --num_objects=1
. Also replace--planner_episode=50
with--planner_episode=20
to run with 20 expert demos. - Block Pulling:
--env=close_loop_block_pulling --num_objects=2
. Also replace--planner_episode=50
with--planner_episode=20
to run with 20 expert demos. - Drawer Opening:
--env=close_loop_drawer_opening --num_objects=1
- Block in Bowl:
--env=close_loop_block_in_bowl --num_objects=2
. Also replace--max_train_step=5000
with--max_train_step=10000
to run 10k time steps.