-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_base+val.py
126 lines (101 loc) · 4.28 KB
/
train_base+val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# -*- encoding: utf-8 -*-
'''
File : train_base+val.py
Time : 2020/03/10 19:34:33
Author : Chao Wang
Version : 1.0
Contact : [email protected]
@Desc : None
'''
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim
import torch.optim.lr_scheduler as lr_scheduler
import time
import os
import glob
import configs
import backbone
from data.datamgr import SimpleDataManager, SetDataManager
from methods.baselinetrain import BaselineTrain
from methods.SSL_train import SSL_Train
from io_utils import model_dict, parse_args, get_resume_file
import sys
sys.path.append('../')
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
for param_group in optimizer.param_groups:
print('lr:',param_group['lr'])
if epoch%50 == 0:
lr = 0.1*(0.1**(epoch//50))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(base_loader, val_loader, model, optimization, start_epoch, stop_epoch, params):
if optimization == 'Adam':
optimizer = torch.optim.Adam(model.parameters())
elif optimization == 'Sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9,weight_decay=1e-3)
else:
raise ValueError('Unknown optimization')
max_acc = 0
for epoch in range(start_epoch,stop_epoch):
adjust_learning_rate(optimizer,epoch)
model.train()
model.train_loop(epoch, base_loader, optimizer )
model.eval()
if not os.path.isdir(params.checkpoint_dir):
os.makedirs(params.checkpoint_dir)
acc = model.test_loop( val_loader)
if acc > max_acc :
print("best model! save...")
max_acc = acc
outfile = os.path.join(params.checkpoint_dir, 'best_model.tar')
torch.save({'epoch':epoch, 'state':model.state_dict()}, outfile)
if (epoch % params.save_freq==0) or (epoch==stop_epoch-1):
outfile = os.path.join(params.checkpoint_dir, '{:d}.tar'.format(epoch))
torch.save({'epoch':epoch, 'state':model.state_dict()}, outfile)
return model
if __name__=='__main__':
np.random.seed(10)
params = parse_args('train')
base_val_file = configs.data_dir[params.dataset] + 'base+val.json'
val_file = configs.data_dir[params.dataset] + 'val.json'
if 'Conv' in params.model:
image_size = 84
else:
image_size = 224
optimization = 'Sgd'
if params.method in ['baseline', 'baseline_dist'] :
base_datamgr = SimpleDataManager(image_size, batch_size = 200)
base_loader = base_datamgr.get_data_loader( base_file , aug = params.train_aug )
val_datamgr = SimpleDataManager(image_size, batch_size = 64)
val_loader = val_datamgr.get_data_loader( val_file, aug = False)
model = BaselineTrain( model_dict[params.model], params.num_classes, loss_type = 'dist')
elif params.method in ['SSL'] :
base_val_datamgr = SimpleDataManager(image_size, batch_size = 200)
base_val_loader = base_val_datamgr.get_data_loader( base_val_file , aug = params.train_aug )
val_datamgr = SimpleDataManager(image_size, batch_size = 64)
val_loader = val_datamgr.get_data_loader( val_file, aug = False)
model = SSL_Train( model_dict[params.model], params.num_classes)
else:
raise ValueError('Unknown method')
model = model.cuda()
#Prepare checkpoint_dir
params.checkpoint_dir = '%s/checkpoints/%s/%s_%s' %(configs.save_dir, params.dataset, params.model, params.method)
if params.train_aug:
params.checkpoint_dir += '_aug'
if not os.path.isdir(params.checkpoint_dir):
os.makedirs(params.checkpoint_dir)
print('checkpoint_dir',params.checkpoint_dir)
if params.resume:
resume_file = get_resume_file(params.checkpoint_dir)
if resume_file is not None:
tmp = torch.load(resume_file)
start_epoch = tmp['epoch'] + 1
model.load_state_dict(tmp['state'])
start_epoch = params.start_epoch
stop_epoch = params.stop_epoch
model = train(base_val_loader, val_loader, model, optimization, start_epoch, stop_epoch, params)