forked from mit-han-lab/nunchaku
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnodes.py
260 lines (222 loc) · 9.31 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import types
import comfy.model_base
import comfy.model_patcher
import comfy.sd
import folder_paths
import GPUtil
import torch
from comfy.ldm.common_dit import pad_to_patch_size
from comfy.supported_models import Flux, FluxSchnell
from diffusers import FluxTransformer2DModel
from einops import rearrange, repeat
from torch import nn
from transformers import T5EncoderModel
from nunchaku.models.transformer_flux import NunchakuFluxTransformer2dModel
class ComfyUIFluxForwardWrapper(nn.Module):
def __init__(self, model: NunchakuFluxTransformer2dModel, config):
super(ComfyUIFluxForwardWrapper, self).__init__()
self.model = model
self.dtype = next(model.parameters()).dtype
self.config = config
def forward(self, x, timestep, context, y, guidance, control=None, transformer_options={}, **kwargs):
assert control is None # for now
bs, c, h, w = x.shape
patch_size = self.config["patch_size"]
x = pad_to_patch_size(x, (patch_size, patch_size))
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
h_len = (h + (patch_size // 2)) // patch_size
w_len = (w + (patch_size // 2)) // patch_size
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(
0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype
).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(
0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype
).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.model(
hidden_states=img,
encoder_hidden_states=context,
pooled_projections=y,
timestep=timestep,
img_ids=img_ids,
txt_ids=txt_ids,
guidance=guidance if self.config["guidance_embed"] else None,
).sample
out = rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:, :, :h, :w]
return out
class SVDQuantFluxDiTLoader:
@classmethod
def INPUT_TYPES(s):
model_paths = ["mit-han-lab/svdq-int4-flux.1-schnell", "mit-han-lab/svdq-int4-flux.1-dev"]
ngpus = len(GPUtil.getGPUs())
return {
"required": {
"model_path": (model_paths,),
"device_id": (
"INT",
{"default": 0, "min": 0, "max": ngpus, "step": 1, "display": "number", "lazy": True},
),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_model"
CATEGORY = "SVDQuant"
TITLE = "SVDQuant Flux DiT Loader"
def load_model(self, model_path: str, device_id: int, **kwargs) -> tuple[FluxTransformer2DModel]:
device = f"cuda:{device_id}"
transformer = NunchakuFluxTransformer2dModel.from_pretrained(model_path).to(device)
dit_config = {
"image_model": "flux",
"in_channels": 16,
"patch_size": 2,
"out_channels": 16,
"vec_in_dim": 768,
"context_in_dim": 4096,
"hidden_size": 3072,
"mlp_ratio": 4.0,
"num_heads": 24,
"depth": 19,
"depth_single_blocks": 38,
"axes_dim": [16, 56, 56],
"theta": 10000,
"qkv_bias": True,
"disable_unet_model_creation": True,
}
if "schnell" in model_path:
dit_config["guidance_embed"] = False
model_config = FluxSchnell(dit_config)
else:
assert "dev" in model_path
dit_config["guidance_embed"] = True
model_config = Flux(dit_config)
model_config.set_inference_dtype(torch.bfloat16, None)
model_config.custom_operations = None
model = model_config.get_model({})
model.diffusion_model = ComfyUIFluxForwardWrapper(transformer, config=dit_config)
model = comfy.model_patcher.ModelPatcher(model, device, device_id)
return (model,)
def svdquant_t5_forward(
self: T5EncoderModel,
input_ids: torch.LongTensor,
attention_mask,
intermediate_output=None,
final_layer_norm_intermediate=True,
dtype: str | torch.dtype = torch.bfloat16,
):
assert attention_mask is None
assert intermediate_output is None
assert final_layer_norm_intermediate
outputs = self.encoder(input_ids, attention_mask=attention_mask)
hidden_states = outputs["last_hidden_state"]
hidden_states = hidden_states.to(dtype=dtype)
return hidden_states, None
class SVDQuantTextEncoderLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_type": (["flux"],),
"text_encoder1": (folder_paths.get_filename_list("text_encoders"),),
"text_encoder2": (folder_paths.get_filename_list("text_encoders"),),
"t5_min_length": (
"INT",
{"default": 512, "min": 256, "max": 1024, "step": 128, "display": "number", "lazy": True},
),
"t5_precision": (["BF16", "INT4"],),
}
}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_text_encoder"
CATEGORY = "SVDQuant"
TITLE = "SVDQuant Text Encoder Loader"
def load_text_encoder(
self, model_type: str, text_encoder1: str, text_encoder2: str, t5_min_length: int, t5_precision: str
):
text_encoder_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder1)
text_encoder_path2 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder2)
if model_type == "flux":
clip_type = comfy.sd.CLIPType.FLUX
else:
raise ValueError(f"Unknown type {model_type}")
clip = comfy.sd.load_clip(
ckpt_paths=[text_encoder_path1, text_encoder_path2],
embedding_directory=folder_paths.get_folder_paths("embeddings"),
clip_type=clip_type,
)
if model_type == "flux":
clip.tokenizer.t5xxl.min_length = t5_min_length
if t5_precision == "INT4":
from nunchaku.models.text_encoder import NunchakuT5EncoderModel
transformer = clip.cond_stage_model.t5xxl.transformer
param = next(transformer.parameters())
dtype = param.dtype
device = param.device
transformer = NunchakuT5EncoderModel.from_pretrained("mit-han-lab/svdq-flux.1-t5")
transformer.forward = types.MethodType(svdquant_t5_forward, transformer)
clip.cond_stage_model.t5xxl.transformer = (
transformer.to(device=device, dtype=dtype) if device.type == "cuda" else transformer
)
return (clip,)
class SVDQuantLoraLoader:
def __init__(self):
self.cur_lora_name = "None"
@classmethod
def INPUT_TYPES(s):
hf_lora_names = ["anime", "ghibsky", "realism", "yarn", "sketch"]
lora_name_list = [
"None",
*folder_paths.get_filename_list("loras"),
*[f"mit-han-lab/svdquant-models/svdq-flux.1-dev-lora-{n}.safetensors" for n in hf_lora_names],
]
return {
"required": {
"model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}),
"lora_name": (lora_name_list, {"tooltip": "The name of the LoRA."}),
"lora_strength": (
"FLOAT",
{
"default": 1.0,
"min": -100.0,
"max": 100.0,
"step": 0.01,
"tooltip": "How strongly to modify the diffusion model. This value can be negative.",
},
),
}
}
RETURN_TYPES = ("MODEL",)
OUTPUT_TOOLTIPS = ("The modified diffusion model.",)
FUNCTION = "load_lora"
TITLE = "SVDQuant LoRA Loader"
CATEGORY = "SVDQuant"
DESCRIPTION = (
"LoRAs are used to modify the diffusion model, "
"altering the way in which latents are denoised such as applying styles. "
"Currently, only one LoRA nodes can be applied."
)
def load_lora(self, model, lora_name: str, lora_strength: float):
if self.cur_lora_name == lora_name:
if self.cur_lora_name == "None":
pass # Do nothing since the lora is None
else:
model.model.diffusion_model.model.set_lora_strength(lora_strength)
else:
if lora_name == "None":
model.model.diffusion_model.model.set_lora_strength(0)
else:
try:
lora_path = folder_paths.get_full_path_or_raise("loras", lora_name)
except FileNotFoundError:
lora_path = lora_name
model.model.diffusion_model.model.update_lora_params(lora_path)
model.model.diffusion_model.model.set_lora_strength(lora_strength)
self.cur_lora_name = lora_name
return (model,)
NODE_CLASS_MAPPINGS = {
"SVDQuantFluxDiTLoader": SVDQuantFluxDiTLoader,
"SVDQuantTextEncoderLoader": SVDQuantTextEncoderLoader,
"SVDQuantLoRALoader": SVDQuantLoraLoader,
}