|
| 1 | +import numpy as np |
| 2 | +from numpy.random import seed |
| 3 | + |
| 4 | +class AdalineSGD(object): |
| 5 | + """ |
| 6 | + ADAptive LInear NEuron Classifier using Stochastic Gradient Descent |
| 7 | + |
| 8 | + Parameters |
| 9 | + ------------------------------------------------------------------- |
| 10 | +
|
| 11 | + eta: float |
| 12 | + Learning Rate (between 0.0 and 1.0) |
| 13 | +
|
| 14 | + n_iter: int |
| 15 | + Passes over the training data |
| 16 | +
|
| 17 | +
|
| 18 | + Attributes |
| 19 | + ------------------------------------------------------------------- |
| 20 | +
|
| 21 | + w_: 1-d array |
| 22 | + Weights after fitting |
| 23 | + |
| 24 | + errors_ : list |
| 25 | + Number of misclassifications in every epoch |
| 26 | +
|
| 27 | + shuffle : bool (default: True) |
| 28 | + Shuffles training data every epoch if True to prevent cycles. |
| 29 | + |
| 30 | + random_state : int (default: None) |
| 31 | + Set random state for shuffling and initializing the weights. |
| 32 | + """ |
| 33 | + |
| 34 | + def __init__(self, eta=0.01, n_iter=10, |
| 35 | + shuffle=True, random_state=None): |
| 36 | + |
| 37 | + self.eta = eta |
| 38 | + self.n_iter = n_iter |
| 39 | + self.w_initialized = True |
| 40 | + self.shuffle = shuffle |
| 41 | + if random_state: |
| 42 | + seed(random_state) |
| 43 | + |
| 44 | + def fit(self, X, y): |
| 45 | + """Fit training data without reinitializing the weights.""" |
| 46 | + |
| 47 | + if not self.w_initialized: |
| 48 | + self._initialize_weights(X.shape[1]) |
| 49 | + |
| 50 | + if y.ravel().shape[0] > 1: |
| 51 | + for xi, target in zip(X, y): |
| 52 | + self._update_weights(xi, target) |
| 53 | + |
| 54 | + else: |
| 55 | + self._update_weights(X, y) |
| 56 | + |
| 57 | + return self |
| 58 | + |
| 59 | + def shuffle(self, X, y): |
| 60 | + """Shuffle training data""" |
| 61 | + |
| 62 | + r = np.random.permutation(len(y)) |
| 63 | + return X[r], y[r] |
| 64 | + |
| 65 | + def _initialize_weights(self, m): |
| 66 | + """Initialize weights to zero""" |
| 67 | + |
| 68 | + self.w_ = np.zeros(1 + m) |
| 69 | + self.w_initialized = True |
| 70 | + |
| 71 | + def _update_weights(self, xi, target): |
| 72 | + """Apply Adaline learning rule to update the weights""" |
| 73 | + |
| 74 | + output = self.net_input(xi) |
| 75 | + error = target - output |
| 76 | + self.w_[1:] += self.eta * xi.dot(error) |
| 77 | + self.w_[0] += self.eta * error |
| 78 | + cost = 0.5 * error**2 |
| 79 | + return cost |
| 80 | + |
| 81 | + def net_input(self, X): |
| 82 | + """Calculate net input""" |
| 83 | + |
| 84 | + return np.dot(X, self.w_[1:]) + self.w_[0] |
| 85 | + |
| 86 | + def activation(self, X): |
| 87 | + """Computer linear activation""" |
| 88 | + |
| 89 | + return self.net_input(X) |
| 90 | + |
| 91 | + def predict(self, X): |
| 92 | + """Return class label after unit step""" |
| 93 | + |
| 94 | + return np.where(self.activation(X) >= 0.0, 1,-1) |
| 95 | + |
| 96 | + |
| 97 | + |
| 98 | + |
0 commit comments