-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3d_edge_detection.py
59 lines (44 loc) · 1.71 KB
/
3d_edge_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import cv2
import numpy as np
b_img = np.zeros((200,200,3),dtype='uint8')
w_img = np.ones((200,200,3),dtype='uint8')
w_img = w_img * 255
u_img = cv2.hconcat([b_img,w_img])
l_img = cv2.hconcat([w_img,b_img])
img = cv2.vconcat([u_img,l_img])
img = cv2.imread('/home/prasadmatta/Desktop/CNN/2.jpg')
print('input image',img.shape)
vertical_kernal = [[[1,0,-1],[1,0,-1],[1,0,-1]],
[[1,0,-1],[1,0,-1],[1,0,-1]],
[[1,0,-1],[1,0,-1],[1,0,-1]]]
horizontal_kernal = [[[1,1,1],[0,0,0],[-1,-1,-1]],
[[1,1,1],[0,0,0],[-1,-1,-1]],
[[1,1,1],[0,0,0],[-1,-1,-1]]]
p_val = 1
for i in range(4):
img = np.rot90(img)
pad_val = np.zeros((p_val,img.shape[1],3),dtype=np.uint8)
img = cv2.vconcat([img,pad_val])
class EDGE:
def __init__(self,img,kernal,strides):
self.img = img
self.height,self.width,self.channel = self.img.shape
self.kernal = np.array(kernal)
self.strides = strides
def vertical(self):
self.gen_img = []
for ht in range(0,self.height-2,self.strides):
row =[]
for wdt in range(0,self.width-2,self.strides):
n_img = self.img[ht:ht+3,wdt:wdt+3] * self.kernal
row.append(sum(list(map(lambda x :sum(x),n_img))))
self.gen_img.append(row)
self.gen_img = np.array(self.gen_img,dtype='uint8')
return self.gen_img
for i in ['vertical_kernal','horizontal_kernal']:
edge_vertical = EDGE(img,eval(i),2)
vertical_img = edge_vertical.vertical()
print('output',img.shape,vertical_img.shape)
cv2.imshow('{0}'.format(str(i)),vertical_img)
cv2.waitKey(0)
cv2.destroyAllWindows()