-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnn_spiral_data.py
139 lines (125 loc) · 4.67 KB
/
dnn_spiral_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
torch.manual_seed(1)
# Define the function to plot decision regions
def plot_decision_regions_3class(model, data_set):
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#00AAFF'])
#cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#00AAFF'])
X = data_set.x.numpy()
y = data_set.y.numpy()
h = .02
x_min, x_max = X[:, 0].min() - 0.1, X[:, 0].max() + 0.1
y_min, y_max = X[:, 1].min() - 0.1, X[:, 1].max() + 0.1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
XX = torch.Tensor(np.c_[xx.ravel(), yy.ravel()])
_, yhat = torch.max(model(XX), 1)
yhat = yhat.numpy().reshape(xx.shape)
plt.pcolormesh(xx, yy, yhat, cmap=cmap_light)
plt.plot(X[y[:] == 0, 0], X[y[:] == 0, 1], 'ro', label = 'y=0')
plt.plot(X[y[:] == 1, 0], X[y[:] == 1, 1], 'go', label = 'y=1')
plt.plot(X[y[:] == 2, 0], X[y[:] == 2, 1], 'o', label = 'y=2')
plt.title("decision region")
plt.legend()
# Create spiral dataset
class Spiral2D(Dataset):
'''
N: number of points per class
D: dimensionality
K: number of classes
'''
def __init__(self, K=3, N=500):
self.D = 2 # dimensionality set to 2
self.K = K # number of classes
self.N = N # number of points per class
X = np.zeros((self.N*self.K, self.D)) # data matrix (each row = single example)
y = np.zeros(self.N*self.K, dtype='uint8') # class labels
for j in range(self.K):
ix = range(self.N*j, self.N*(j+1))
r = np.linspace(0.0,1,self.N) # radius
t = np.linspace(j*4,(j+1)*4,self.N) + np.random.randn(self.N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j
self.x = torch.from_numpy(X).float()
self.y = torch.from_numpy(y).long()
self.len = self.x.shape[0]
def __getitem__(self, index):
return self.x[index], self.y[index]
def __len__(self):
return self.len
def plot_data(self):
plt.plot(self.x[self.y==0, 0], self.x[self.y==0, 1], 'o', label="y=0")
plt.plot(self.x[self.y==1, 0], self.x[self.y==1, 1], 'ro', label="y=1")
plt.plot(self.x[self.y==2, 0], self.x[self.y==2, 1], 'go', label="y=2")
plt.legend()
plt.show()
# Define model
class NNet(nn.Module):
def __init__(self, Layers):
super().__init__()
self.hidden = nn.ModuleList()
for input_size, output_size in zip(Layers, Layers[1:]):
self.hidden.append(nn.Linear(input_size, output_size))
# Define the forward function
def forward(self, x):
L = len(self.hidden)
for (l, linear_layer) in zip(range(L), self.hidden):
if l < L-1:
x = torch.relu(linear_layer(x))
else:
x = linear_layer(x)
return x
# Defne training function
def train(data_set, model, criterion, train_loader, optimizer, epochs=100):
training_info = {
'loss': [],
'accuracy': []
}
for epoch in range(epochs):
for x, y in train_loader:
optimizer.zero_grad()
yhat = model(x)
loss = criterion(yhat, y)
loss.backward()
optimizer.step()
training_info['loss'].append(loss.data.item())
predictions = model(data_set.x)
_, yhat = torch.max(predictions, dim=1)
accuracy = 100 * (yhat == data_set.y).numpy().mean()
training_info['accuracy'].append(accuracy)
return training_info
# Define model parameters
layers = [2, 20, 10, 3]
# Instantiate model, loss function and optimizer
model = NNet(layers)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Create dataset
data_set = Spiral2D()
# Create data loader
train_loader = DataLoader(dataset=data_set, batch_size=100)
# Train model
training_info = train(data_set, model, criterion, train_loader, optimizer, epochs=1000)
# Plot training loss
plt.subplot(2, 1, 1)
plt.plot(training_info['loss'], 'r')
plt.ylabel('loss')
# Plot training accuracy
plt.subplot(2, 1, 2)
plt.plot(training_info['accuracy'], 'b')
plt.ylabel('accuracy')
plt.xlabel('iterations')
plt.show()
# Plot decision regions
plot_decision_regions_3class(model, data_set)
# Print out final accuracy
print("Final training accuracy:", training_info['accuracy'][-1])
# Test data
test_data = Spiral2D(K=3, N=2000)
# Test predictions
predictions = model(test_data.x)
_, yhat = torch.max(predictions, dim=1)
print("Test accuracy:", 100 * (yhat == test_data.y).numpy().mean())