-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_regression.py
83 lines (65 loc) · 2.1 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt
from plotter_utils.plotter_logistic import plot_error_surfaces
torch.manual_seed(1)
# Define dataset
class DataSet(Dataset):
def __init__(self):
self.x = torch.arange(-1, 1, 0.1).view(-1, 1)
self.y = torch.zeros(self.x.shape[0], 1)
self.y[self.x[:, 0] > 0.2] = 1
self.len = self.x.shape[0]
def __getitem__(self, index):
return self.x[index], self.y[index]
def __len__(self):
return self.len
dataset = DataSet()
dataloader = DataLoader(dataset=dataset, batch_size=5)
class logistic_regression(nn.Module):
def __init__(self, input_size):
super().__init__()
self.linear = nn.Linear(input_size, 1)
def forward(self, x):
yhat = torch.sigmoid(self.linear(x))
return yhat
# Alternate
# logistic_regression = nn.Sequential(
# nn.Linear(1, 1),
# nn.Sigmoid()
# )
criterion = nn.MSELoss()
# Custom
# def criterion(yhat,y):
# out = -1 * torch.mean(y * torch.log(yhat) + (1 - y) * torch.log(1 - yhat))
# return out
model = logistic_regression(1)
model.state_dict() ['linear.weight'].data[0] = torch.tensor([[-5]])
model.state_dict() ['linear.bias'].data[0] = torch.tensor([[-10]])
optimizer = torch.optim.SGD(model.parameters(), lr=2.5)
get_surface = plot_error_surfaces(15, 13, dataset[:][0], dataset[:][1], 30)
LOSS = []
def train_model(iters):
for epoch in range(iters):
for x, y in dataloader:
yhat = model(x)
loss = criterion(yhat, y)
LOSS.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
get_surface.set_para_loss(model, loss.tolist())
if epoch % 20 == 0:
get_surface.plot_ps()
train_model(100)
# plt.plot(LOSS)
# plt.xlabel("Iterations")
# plt.ylabel("Loss")
# plt.show()
# Make the Prediction
yhat = model(dataset.x)
label = yhat > 0.5
print("The accuracy: ", torch.mean((
label == dataset.y.type(torch.ByteTensor))
.type(torch.float)))