-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultivar_in_linear_regression.py
76 lines (58 loc) · 1.8 KB
/
multivar_in_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
from plotter_utils.plotter2d import Plot2DPlane
torch.manual_seed(1)
# Define dataset
class DataSet2D(Dataset):
def __init__(self):
self.x = torch.zeros(20, 2)
self.x[:, 0] = torch.arange(-5, 5, 0.5)
self.x[:, 1] = torch.arange(-1, 1, 0.1)
self.w = torch.tensor([[1.0], [1.0]])
self.b = 1
self.f = torch.matmul(self.x, self.w) + self.b
self.y = self.f + 0.1 * torch.randn((self.x.shape[0], 1))
self.len = self.x.shape[0]
def __getitem__(self, index):
return (self.x[index], self.y[index])
def __len__(self):
return self.len
# Insatance of dataset
dataset = DataSet2D()
# Create dataloader
trainloader = DataLoader(dataset=dataset, batch_size=20)
# Define model
class LinearRegression(nn.Module):
def __init__(self, input_size, output_size):
super().__init__()
self.linear = nn.Linear(input_size, output_size)
def forward(self, x):
yhat = self.linear(x)
return yhat
# Define criterion function
criterion = nn.MSELoss()
# Create model instance
model = LinearRegression(2, 1)
# Create optimizer
optimizer = optim.SGD(model.parameters(), lr=0.1)
LOSS = []
epochs = 100
print("Before training: \n")
print(model.state_dict())
# Plot the error surface
Plot2DPlane(model, dataset)
def train_model(epochs):
for epoch in range(epochs):
for x, y in trainloader:
yhat = model(x)
loss = criterion(yhat, y)
LOSS.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_model(epochs)
print("After training: \n")
print(model.state_dict())
# Plot the error surface
Plot2DPlane(model, dataset, epochs)