-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_single_dim_v2.py
102 lines (83 loc) · 2.7 KB
/
nn_single_dim_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt
def plot_data(X, Y, epoch="Pre-training", model=None) -> None:
Y[(X[:, 0] > -5) & (X[:, 0] < 0)] = 1
Y[(X[:, 0] > 5) & (X[:, 0] < 10)] = 1
plt.plot(X[Y==0].numpy(), Y[Y==0].numpy(), 'ro', label='training points y=0' )
plt.plot(X[Y==1].numpy(), Y[Y==1].numpy(), 'bo', label='training points y=1' )
if model is not None:
plt.plot(X.numpy(), model(X).detach().numpy(), 'g-', label='neural network')
plt.title(f"Epoch: {epoch}")
plt.show()
torch.manual_seed(1)
# Sample dataser
class DataSet(Dataset):
# Constructor
def __init__(self):
self.x = torch.arange(-10, 15, 0.1).view(-1, 1)
self.y = torch.zeros(self.x.shape[0])
self.y[(self.x[:, 0] > -5) & (self.x[:, 0] < 0)] = 1
self.y[(self.x[:, 0] > 5) & (self.x[:, 0] < 10)] = 1
self.y = self.y.view(-1, 1)
self.len = self.x.shape[0]
# Getter
def __getitem__(self, index):
return self.x[index], self.y[index]
# Length
def __len__(self):
return self.len
# Define model
class NN(nn.Module):
# Constructor
def __init__(self, input_dim, hidden, output_dim):
super().__init__()
self.linear1 = nn.Linear(input_dim, hidden)
self.linear2 = nn.Linear(hidden, output_dim)
# Forward pass
def forward(self, x):
x = torch.sigmoid(self.linear1(x))
yhat = torch.sigmoid(self.linear2(x))
return yhat
# Criterion function
criterion = nn.BCELoss()
# Training function
def train_model(data_set, model, criterion, train_loader, optimizer,
epochs=1000, plot_frq=200)-> list:
cost_list = []
for epoch in range(epochs):
cost = 0
for x, y in train_loader:
optimizer.zero_grad()
yhat = model(x)
loss = criterion(yhat, y)
loss.backward()
optimizer.step()
cost += loss.item()
if epoch % plot_frq == 0:
plot_data(data_set.x, data_set.y, epoch, model)
cost_list.append(cost)
return cost_list
# Model parameters
input_dim = 1
hidden = 9
output_dim = 1
learning_rate = 0.1
# Create data loader
data_set = DataSet()
train_loader = DataLoader(dataset=data_set, batch_size=100)
# Create model
model = NN(input_dim, hidden, output_dim)
# Optimizer
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Plot initial data
plot_data(data_set.x, data_set.y)
# Train model
cost_list = train_model(data_set, model, criterion, train_loader, optimizer, epochs=2000)
# Plot cost
plt.plot(cost_list)
plt.xlabel("epoch")
plt.ylabel("cost")
plt.title("Cost per epoch")
plt.show()