-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunivar_linear_regression.py
83 lines (65 loc) · 1.95 KB
/
univar_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
from plotter_utils.plotter import plot_error_surfaces
import matplotlib.pyplot as plt
torch.manual_seed(0)
# define dataset
class DataSet(Dataset):
def __init__(self):
self.x = torch.arange(-3, 3, 0.1).view(-1, 1)
self.y = self.x * 3 + 1 + torch.randn(self.x.size())
self.len = self.x.shape[0]
def __len__(self):
return self.len
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
# create dataloader
dataset = DataSet()
train_loader = DataLoader(dataset=dataset, batch_size=1)
# define model
class LinearRegression(nn.Module):
def __init__(self, input_size, output_size):
super().__init__()
self.linear = nn.Linear(input_size, output_size)
def forward(self, x):
yhat = self.linear(x)
return yhat
# criterion function
criterion = nn.MSELoss()
# model
model = LinearRegression(1, 1)
# optimizer
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Get the optimizer state
# optimizer.state_dict()
# initialize weights
model.state_dict()['linear.weight'][0] = -15.0
model.state_dict()['linear.bias'][0] = -10.0
# Create plot surface object
get_surface = plot_error_surfaces(15, 13, dataset.x, dataset.y, 30, go = False)
# store loss
LOSS = []
# train model
def train_model(iters):
for epoch in range(iters):
total = 0
for x, y in train_loader:
y_hat = model(x)
loss = criterion(y_hat, y)
get_surface.set_para_loss(model, loss.tolist())
optimizer.zero_grad()
loss.backward()
optimizer.step()
total += loss.item()
get_surface.plot_ps()
LOSS.append(total)
train_model(10)
# Get the weights and biases of the model
# model.state_dict()
# Plot the loss
plt.plot(LOSS,label = "Batch Gradient Descent")
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Cost")
plt.show()