forked from GautamShine/emotion-conv-net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopencv_functions.py
317 lines (253 loc) · 9.88 KB
/
opencv_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
###############################################################################
# OpenCV face recognition and segmentation
###############################################################################
import os, shutil, sys, time, re, glob
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
import Image
import caffe
from utility_functions import *
def load_cascades():
# Load Haar cascade files containing features
cascPaths = ['models/haarcascades/haarcascade_frontalface_default.xml',
'models/haarcascades/haarcascade_frontalface_alt.xml',
'models/haarcascades/haarcascade_frontalface_alt2.xml',
'models/haarcascades/haarcascade_frontalface_alt_tree.xml'
'models/lbpcascades/lbpcascade_frontalface.xml']
faceCascades = []
for casc in cascPaths:
faceCascades.append(cv.CascadeClassifier(casc))
return faceCascades
def DetectFace(image,color,faceCascades,single_face,second_pass,draw_rects,scale=1.0):
# Resize
img = cv.resize(image, (0,0), fx=1, fy=1, interpolation = cv.INTER_CUBIC)
# Convert to grayscale and equalize the histogram
if color:
gray_img = img.copy().astype(np.uint8)
gray_img = cv.cvtColor(gray_img, cv.COLOR_BGR2GRAY)
else:
gray_img = img.copy().astype(np.uint8)
cv.equalizeHist(gray_img, gray_img)
# Detect the faces
faces = faceCascades[2].detectMultiScale(
gray_img,
scaleFactor=1.1,
minNeighbors=7,
minSize=(50, 50),
flags = cv.CASCADE_SCALE_IMAGE)
# Eliminate spurious extra faces
discardExtraFaces = False # Set to true to enable
if discardExtraFaces and len(faces) > 1:
faces = faces[0,:]
faces = faces[np.newaxis,:]
# Rescale cropBox
if scale != 1.0 and len(faces) > 0:
for i in range(faces.shape[0]):
faces[i] = rescaleCropbox(img,faces[i],scale)
print('Detected %d faces.' % len(faces))
# Draw a rectangle around the faces
if draw_rects:
for (x, y, w, h) in faces:
cv.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
# For laboratory images, remove any spurious detections
if single_face and len(faces) > 1:
faces = faces[0,:]
faces = faces[np.newaxis,:]
if len(faces) > 0 and second_pass:
approved = []
for i in range(len(faces)):
cropped_face = imgCrop(gray_img, faces[i])
alt_check = faceCascades[1].detectMultiScale(
cropped_face,
scaleFactor=1.05,
minNeighbors=5,
minSize=(int(0.8*faces[i][2]), int(0.8*faces[i][3])),
flags = cv.CASCADE_SCALE_IMAGE)
# Check if exactly 1 face was detected in cropped image
if len(alt_check) == 1:
approved.append(i)
faces = faces[approved]
return img, faces
# Resize cropBox
def rescaleCropbox(img,cropBox,scale=1.0):
x, y, w, h = cropBox
# Check for valid box sizes
if scale <= 0:
# Invalid input. Return original
return cropBox
if scale < 1.0:
x += int(w*(1-scale)/2)
y += int(h*(1-scale)/2)
w = int(w*scale)
h = int(h*scale)
elif scale > 1.0:
x -= int(w*(scale-1.0)/2)
y -= int(h*(scale-1.0)/2)
w = int(w*scale)
h = int(h*scale)
# Make sure dimensions won't be exceeded:
exceeded = False; count = 0; maxCount = 10 # Arbitrary magic number
while True:
if x < 0:
w += 2*x # Make w smaller to maintain symmetry
x = 0
if y < 0:
h += 2*y
y = 0
exceeded = True
if x+w > img.shape[1]:
x -= x + w - img.shape[1]
exceeded = True
if y+h > img.shape[0]:
y -= y + h - img.shape[0]
exceeded = True
if count > maxCount:
# Rescaling has failed. Just return original image
print "Error: opencv_functions.imgCrop: Crop scale exceeded image dimensions"
return cropBox
if not exceeded:
# Rescaling succeeded!
break
else:
count += 1
exceeded = False
# Return rescaled cropbox
return (x,y,w,h)
# Crop image array to pixels indicated by crop box
def imgCrop(img, cropBox, scale=1.0):
cropBox = rescaleCropbox(img,cropBox,scale)
(x,y,w,h) = cropBox
img = img[y:(y+h), x:(x+h)]
return img
# Convert bgr to rgb
def rgb(bgr_img):
b,g,r = cv.split(bgr_img) # get b,g,r
rgb_img = cv.merge([r,g,b]) # switch it to rgb
return rgb_img
# Given directory loc, get all images in directory and crop to just faces
# Returns face_list, an array of cropped image file names
def faceCrop(targetDir, imgList, color, single_face):
# Load list of Haar cascades for faces
faceCascades = load_cascades()
# Iterate through images
face_list = []
for img in imgList:
if os.path.isdir(img):
continue
pil_img = Image.open(img)
if color:
cv_img = cv.cvtColor(np.array(pil_img), cv.COLOR_RGB2BGR)
else:
cv_img = np.array(pil_img)
# Convert to grayscale if this image is actually color
if cv_img.ndim == 3:
cv_img = cv.cvtColor(np.array(pil_img), cv.COLOR_BGR2GRAY)
# Detect all faces in this image
scaled_img, faces = DetectFace(cv_img, color, faceCascades, single_face, second_pass=False, draw_rects=False)
# Iterate through faces
n=1
for face in faces:
cropped_cv_img = imgCrop(scaled_img, face, scale=1.0)
if color:
cropped_cv_img = rgb(cropped_cv_img)
fname, ext = os.path.splitext(img)
cropped_pil_img = Image.fromarray(cropped_cv_img)
#save_name = loc + '/cropped/' + fname.split('/')[-1] + '_crop' + str(n) + ext
save_name = targetDir + '/' + fname.split('/')[-1] + '_crop' + str(n) + ext
cropped_pil_img.save(save_name)
face_list.append(save_name)
n += 1
return face_list
# Add an emoji to an image at a specified point and size
# Inputs: img, emoji are ndarrays of WxHx3
# faces is a list of (x,y,w,h) tuples for each face to be replaced
def addEmoji(img,faces,emoji):
for x,y,w,h in faces:
# Resize emoji to desired width and height
dim = max(w,h)
em = cv.resize(emoji, (dim,dim), interpolation = cv.INTER_CUBIC)
# Get boolean for transparency
trans = em.copy()
trans[em == 0] = 1
trans[em != 0] = 0
# Delete all pixels in image where emoji is nonzero
img[y:y+h,x:x+w,:] *= trans
# Add emoji on those pixels
img[y:y+h,x:x+w,:] += em
return img
# Add emojis to image at specified points and sizes
# Inputs: img is ndarrays of WxHx3
# emojis is a list of WxHx3 emoji arrays
# faces is a list of (x,y,w,h) tuples for each face to be replaced
# Labels is a list of integer labels for each emotion
def addMultipleEmojis(img,faces,emojis,labels):
categories = [ 'Angry' , 'Disgust' , 'Fear' , 'Happy' , 'Neutral' , 'Sad' , 'Surprise']
for i in range(len(labels)):
x,y,w,h = faces[i]
label = labels[i]
emoji = emojis[int(label)]
# Resize emoji to desired width and height
dim = max(w,h)
em = cv.resize(emoji, (dim,dim), interpolation = cv.INTER_CUBIC)
# Get boolean for transparency
trans = em.copy()
trans[em == 0] = 1
trans[em != 0] = 0
# Delete all pixels in image where emoji is nonzero
img[y:y+h,x:x+w,:] *= trans
# Add emoji on those pixels
img[y:y+h,x:x+w,:] += em
return img
# Switch between RGB and BGR
def toggleRGB(img):
r,g,b = cv.split(img)
img = cv.merge([b,g,r])
return img
# Combine two images for displaying side-by-side
# If maxSize is true, crops sides of image to keep under 2880 pixels in width
def cvCombineTwoImages(img1,img2,buf=2,maxSize=True):
h1, w1, c1 = img1.shape
h2, w2, c2 = img2.shape
screenWidth = 1920 # Width in pixels for macbook pro is 2880
margin = 40 # Minimum number of extra pixels to save
excess = w1 + w2 + buf - screenWidth + margin
if maxSize and excess > 0:
diff = int(np.ceil(float(excess)/4.0))
img1 = img1[:,diff:-diff,:]
img2 = img2[:,diff:-diff,:]
h1, w1, c1 = img1.shape
h2, w2, c2 = img2.shape
h = max(h1,h2)
w = w1 + w2 + buf
c = max(c1,c2)
if c1 != c2:
# Incompatible dimensions
print "Error, images have imcompatible dimensions along depth axis"
return None
img = np.zeros([h,w,c]).astype(np.uint8)
# Add in the two images
img[0:h1,0:w1,:] = img1
img[0:h2,w1+buf:w1+buf+w2,:] = img2
# Returned combined image as numpy array of uint8's
return img
# Create a directory only if it does not already exist
def mkdirNoForce(dir):
if not os.path.exists(dir):
os.mkdir(dir)
# Save a test image with a default name from the current timestamp
def saveTestImage(img,filename=None,outDir=None):
# Get image filename from current timestamp
if filename is None:
ts = time.time()
formatStr = "%Y-%m-%d_%H-%M-%S"
filestr = datetime.datetime.fromtimestamp(ts).strftime(formatStr)
filename = filestr + ".png"
if outDir is not None:
mkdirNoForce(outDir)
filename = outDir + "/" + filename
# Save image
im = Image.fromarray(toggleRGB(img))
im.save(filename)
# Return filename
return filename