forked from spmallick/learnopencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
51 lines (42 loc) · 1.61 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# import required modules
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
import matplotlib.pyplot as plt
class Net:
@staticmethod
def build(width, height, depth, weightsPath=None):
'''
modified lenet structure
input: input_shape (width, height, channels)
returns: trained/loaded model
'''
# initialize the model
model = Sequential()
# first layer CONV => RELU => POOL
model.add(Convolution2D(32, (3, 3), input_shape = (width, height, depth)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
# second layer CONV => RELU => POOL
model.add(Convolution2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
# third layer of CONV => RELU => POOL
model.add(Convolution2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size = (2, 2)))
# set of FC => RELU layers
model.add(Flatten())
# number of neurons in FC layer = 128
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
# as number of classes is 36
model.add(Dense(36))
model.add(Activation('softmax'))
# if weightsPath is specified load the weights
if weightsPath is not None:
print('weights loaded')
model.load_weights(weightsPath)
# return model
return model