|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +Test 1D plotting overrides. |
| 4 | +""" |
| 5 | +import numpy as np |
| 6 | +import numpy.ma as ma |
| 7 | +import pandas as pd |
| 8 | + |
| 9 | +import proplot as pplt |
| 10 | + |
| 11 | +# ## Edge fix |
| 12 | +# |
| 13 | +# Test edge fix applied to 1D plotting utilities. |
| 14 | + |
| 15 | +# %matplotlib inline |
| 16 | + |
| 17 | +pplt.rc.inlinefmt = 'svg' |
| 18 | +pplt.rc.edgefix = 1 |
| 19 | +fig, axs = pplt.subplots(ncols=2, share=False) |
| 20 | +axs.format(grid=False) |
| 21 | +b = axs[0].bar(np.random.rand(10,) * 10 - 5, width=1, negpos=True) |
| 22 | +axs[1].area(np.random.rand(5, 3), stack=True) |
| 23 | + |
| 24 | +# |
| 25 | +# Make sure `edgefix` is not applied wherever transparent colorbars appear. |
| 26 | + |
| 27 | +pplt.rc.inlinefmt = 'svg' |
| 28 | +data = np.random.rand(10, 10) |
| 29 | +cmap = 'magma' |
| 30 | +fig, axs = pplt.subplots(nrows=3, ncols=2, refwidth=2.5, share=False) |
| 31 | +for i, iaxs in enumerate((axs[:2], axs[2:4])): |
| 32 | + if i == 0: |
| 33 | + cmap = pplt.Colormap('magma', alpha=0.5) |
| 34 | + alpha = None |
| 35 | + iaxs.format(title='Colormap alpha') |
| 36 | + else: |
| 37 | + cmap = 'magma' |
| 38 | + alpha = 0.5 |
| 39 | + iaxs.format(title='Single alpha') |
| 40 | + iaxs[0].contourf(data, cmap=cmap, colorbar='b', alpha=alpha) |
| 41 | + iaxs[1].pcolormesh(data, cmap=cmap, colorbar='b', alpha=alpha) |
| 42 | +axs[4].bar(data[:3, :3], alpha=0.5) |
| 43 | +axs[5].area(data[:3, :3], alpha=0.5, stack=True) |
| 44 | + |
| 45 | +# %% [markdown] |
| 46 | +# ## Auto reverse |
| 47 | +# |
| 48 | +# Test enabled and disabled auto reverse. |
| 49 | + |
| 50 | +# %% |
| 51 | +x = np.arange(10)[::-1] |
| 52 | +y = np.arange(10) |
| 53 | +z = np.random.rand(10, 10) |
| 54 | +fig, axs = pplt.subplots(ncols=2, nrows=2, share=False) |
| 55 | +# axs[0].format(xreverse=False) # should fail |
| 56 | +axs[0].plot(x, y) |
| 57 | +axs[1].format(xlim=(0, 9)) # manual override |
| 58 | +axs[1].plot(x, y) |
| 59 | +axs[2].pcolor(x, y[::-1], z) |
| 60 | +axs[3].format(xlim=(0, 9), ylim=(0, 9)) # manual override! |
| 61 | +axs[3].pcolor(x, y[::-1], z) |
| 62 | + |
| 63 | + |
| 64 | +# ## Invalid values |
| 65 | +# |
| 66 | +# Test distributions with missing or invalid values. |
| 67 | + |
| 68 | +fig, axs = pplt.subplots(ncols=2) |
| 69 | +data = np.random.normal(size=(100, 5)) |
| 70 | +for j in range(5): |
| 71 | + data[:, j] = np.sort(data[:, j]) |
| 72 | + data[:19 * (j + 1), j] = np.nan |
| 73 | + # data[:20, :] = np.nan |
| 74 | +data_masked = ma.masked_invalid(data) # should be same result |
| 75 | +for ax, dat in zip(axs, (data, data_masked)): |
| 76 | + ax.plot(dat, means=True, shade=True) |
| 77 | + |
| 78 | +fig, axs = pplt.subplots(ncols=2, nrows=2) |
| 79 | +data = np.random.normal(size=(100, 5)) |
| 80 | +for i in range(5): # test uneven numbers of invalid values |
| 81 | + data[:10 * (i + 1), :] = np.nan |
| 82 | +data_masked = ma.masked_invalid(data) # should be same result |
| 83 | +for ax, dat in zip(axs[:2], (data, data_masked)): |
| 84 | + ax.violin(dat, means=True) |
| 85 | +for ax, dat in zip(axs[2:], (data, data_masked)): |
| 86 | + ax.box(dat, fill=True, means=True) |
| 87 | + |
| 88 | +# ## Histogram types |
| 89 | +# |
| 90 | +# Test the different histogram types using basic keywords. |
| 91 | + |
| 92 | +fig, axs = pplt.subplots(ncols=2, nrows=2, share=False) |
| 93 | +data = np.random.normal(size=(100, 5)) |
| 94 | +data += np.arange(5) |
| 95 | +kws = ({'stack': False}, {'stack': True}, {'fill': False}, {'fill': True, 'alpha': 0.5}) |
| 96 | +for ax, kw in zip(axs, kws): |
| 97 | + ax.hist(data, ec='k', **kw) |
| 98 | + |
| 99 | + |
| 100 | +# ## Scatter inbounds |
| 101 | +# |
| 102 | +# Test in-bounds scatter plots. |
| 103 | + |
| 104 | +fig, axs = pplt.subplots(ncols=2, share=False) |
| 105 | +N = 100 |
| 106 | +fig.format(xlim=(0, 20)) |
| 107 | +for i, ax in enumerate(axs): |
| 108 | + c = ax.scatter(np.arange(N), np.arange(N), c=np.arange(N), inbounds=i) |
| 109 | + ax.colorbar(c, loc='b') |
| 110 | + |
| 111 | +# ## Scatter columns |
| 112 | +# |
| 113 | +# Test scatter column iteration and property cycling. Note we cannot |
| 114 | +# retrieve metadata from `s` and `c`. |
| 115 | +# |
| 116 | + |
| 117 | +fig, ax = pplt.subplots() |
| 118 | +cycle = pplt.Cycle( |
| 119 | + '538', marker=['X', 'o', 's', 'd'], sizes=[50, 100], edgecolors=['r', 'k'] |
| 120 | +) |
| 121 | +ax.scatter(np.random.rand(10, 4), np.random.rand(10, 4), cycle=cycle) |
| 122 | + |
| 123 | +fig, axs = pplt.subplots(ncols=2) |
| 124 | +axs[0].plot(np.random.rand(5, 5), np.random.rand(5, 5), lw=5) |
| 125 | +axs[1].scatter(np.random.rand(5, 5), np.random.rand(5, 5), s=np.random.rand(5, 5) * 300) |
| 126 | + |
| 127 | +# ## Scatter colors |
| 128 | + |
| 129 | +# Test diverse scatter keyword parsing. |
| 130 | + |
| 131 | + |
| 132 | +x = np.random.randn(60) |
| 133 | +y = np.random.randn(60) |
| 134 | + |
| 135 | +fig, axs = pplt.subplots() |
| 136 | +axs.scatter(x, y, s=80, fc='none', edgecolors='r') |
| 137 | + |
| 138 | +# Test RGB color scaling. |
| 139 | + |
| 140 | +fig, axs = pplt.subplots(ncols=3) |
| 141 | +data = np.random.rand(50, 3) |
| 142 | +ax = axs[0] |
| 143 | +ax.scatter(data, c=data, cmap='reds') |
| 144 | +ax = axs[1] |
| 145 | +ax.scatter(data[:, 0], c=data, cmap='reds', ) # cycle='foo') # should warn |
| 146 | +ax = axs[2] |
| 147 | +ax.scatter(data, mean=True, shadestd=1, barstd=0.5) |
| 148 | +ax.format(xlim=(-0.1, 2.1)) |
| 149 | + |
| 150 | +# ## Scatter sizes |
| 151 | + |
| 152 | +# Test marker size scaling. |
| 153 | + |
| 154 | +fig = pplt.figure() |
| 155 | +ax = fig.subplot(margin=0.15) |
| 156 | +data = np.random.rand(5) * 500 |
| 157 | +ax.scatter( |
| 158 | + np.arange(5), |
| 159 | + [0.25] * 5, |
| 160 | + c='blue7', |
| 161 | + sizes=['5pt', '10pt', '15pt', '20pt', '25pt'] |
| 162 | +) |
| 163 | +ax.scatter( |
| 164 | + np.arange(5), |
| 165 | + [0.50] * 5, |
| 166 | + c='red7', |
| 167 | + sizes=data, |
| 168 | + absolute_size=True |
| 169 | +) |
| 170 | +ax.scatter( |
| 171 | + np.arange(5), |
| 172 | + [0.75] * 5, |
| 173 | + c='red7', |
| 174 | + sizes=data, |
| 175 | + absolute_size=True |
| 176 | +) |
| 177 | +for i, d in enumerate(data): |
| 178 | + ax.text(i, 0.5, format(d, '.0f'), va='center', ha='center') |
| 179 | + |
| 180 | +fig, axs = pplt.subplots(ncols=3) |
| 181 | +pplt.rc.reset() |
| 182 | +pplt.rc['lines.markersize'] = 20 |
| 183 | +N = 50 |
| 184 | +x = np.random.rand(N) |
| 185 | +y = np.random.rand(N) |
| 186 | +for i, ax in enumerate(axs): |
| 187 | + kw = {'absolute_size': i == 2} |
| 188 | + if i == 1: |
| 189 | + kw['smax'] = 20 ** 2 # should be same as relying on lines.markersize |
| 190 | + ax.scatter(x, y, x * y, **kw) |
| 191 | + |
| 192 | +# ## Relative bar width |
| 193 | + |
| 194 | +# Test relative and absolute widths. |
| 195 | + |
| 196 | +fig, axs = pplt.subplots(ncols=3) |
| 197 | +x = np.arange(10) |
| 198 | +y = np.random.rand(10, 2) |
| 199 | +for i, ax in enumerate(axs): |
| 200 | + ax.bar(x * (2 * i + 1), y, width=0.8, absolute_width=i == 1) |
| 201 | + |
| 202 | +# ## Pie charts |
| 203 | +# |
| 204 | +# Test basic pie plots. No examples in user guide right now. |
| 205 | + |
| 206 | +pplt.rc.inlinefmt = 'svg' |
| 207 | +labels = ['foo', 'bar', 'baz', 'biff', 'buzz'] |
| 208 | +array = np.arange(1, 6) |
| 209 | +data = pd.Series(array, index=labels) |
| 210 | +fig = pplt.figure() |
| 211 | +ax = fig.subplot(121) |
| 212 | +ax.pie(array, edgefix=True, labels=labels, ec='k', cycle='reds') |
| 213 | +ax = fig.subplot(122) |
| 214 | +ax.pie(data, ec='k', cycle='blues') |
| 215 | + |
| 216 | +# ## Box violin plots |
| 217 | +# |
| 218 | +# Test new default behavior of passing cycles to box/violin commands. |
| 219 | + |
| 220 | +fig = pplt.figure() |
| 221 | +ax = fig.subplot(121) |
| 222 | +ax.box( |
| 223 | + np.random.uniform(-3, 3, size=(1000, 5)), |
| 224 | + # cycle='blues_r', |
| 225 | + fillcolor=['red', 'blue', 'green', 'orange', 'yellow'], |
| 226 | + # ec='face', |
| 227 | +) |
| 228 | +ax = fig.subplot(122) |
| 229 | +ax.violin( |
| 230 | + np.random.normal(0, 1, size=(1000, 5)), |
| 231 | + # cycle='greys', |
| 232 | + fillcolor=['gray1', 'gray7'], |
| 233 | + means=True, |
| 234 | + barstds=2, |
| 235 | +) |
| 236 | + |
| 237 | + |
| 238 | +# Sample data |
| 239 | +N = 500 |
| 240 | +state = np.random.RandomState(51423) |
| 241 | +data1 = state.normal(size=(N, 5)) + 2 * (state.rand(N, 5) - 0.5) * np.arange(5) |
| 242 | +data1 = pd.DataFrame(data1, columns=pd.Index(list('abcde'), name='label')) |
| 243 | +data2 = state.rand(100, 7) |
| 244 | +data2 = pd.DataFrame(data2, columns=pd.Index(list('abcdefg'), name='label')) |
| 245 | + |
| 246 | +# Figure |
| 247 | +fig, axs = pplt.subplots([[1, 1, 2, 2], [0, 3, 3, 0]], span=False) |
| 248 | +axs.format( |
| 249 | + abc='A.', titleloc='l', grid=False, |
| 250 | + suptitle='Boxes and violins demo' |
| 251 | +) |
| 252 | + |
| 253 | +# Box plots |
| 254 | +ax = axs[0] |
| 255 | +obj1 = ax.box(data1, means=True, marker='x', meancolor='r', fillcolor='gray4') |
| 256 | +print(obj1) |
| 257 | +ax.format(title='Box plots') |
| 258 | + |
| 259 | +# Violin plots |
| 260 | +ax = axs[1] |
| 261 | +obj2 = ax.violin(data1, fillcolor='gray6', means=True, points=100) |
| 262 | +print(obj2) |
| 263 | +ax.format(title='Violin plots') |
| 264 | + |
| 265 | +# Boxes with different colors |
| 266 | +ax = axs[2] |
| 267 | +ax.format(title='Multiple colors', ymargin=0.15) |
| 268 | +ax.boxh(data2, cycle='pastel2') |
| 269 | + |
| 270 | +# ## Parametric labels |
| 271 | +# |
| 272 | +# Test passing strings as parametric 'color values'. Likely a common use case. |
| 273 | + |
| 274 | +pplt.rc.inlinefmt = 'svg' |
| 275 | +fig, ax = pplt.subplots() |
| 276 | +c = ax.parametric( |
| 277 | + np.random.rand(5), c=list('abcde'), lw=20, colorbar='b', cmap_kw={'left': 0.2} |
| 278 | +) |
| 279 | + |
| 280 | +# ## Parametric labels |
| 281 | +# |
| 282 | +# Test parametric plots with string labels. |
| 283 | + |
| 284 | +fig, ax = pplt.subplots() |
| 285 | +ax.parametric( |
| 286 | + np.random.rand(5), c=list('abcde'), lw=5, colorbar='b', cmap_kw={'left': 0.2} |
| 287 | +) |
| 288 | + |
| 289 | +# ## Parametric color input |
| 290 | +# |
| 291 | +# Test color input arguments. Should be able to make monochromatic |
| 292 | +# plots for case where we want `line` without sticky x/y edges. |
| 293 | + |
| 294 | +# %matplotlib inline |
| 295 | +fig, axs = pplt.subplots(ncols=2, nrows=2) |
| 296 | +colors = ( |
| 297 | + [(0, 1, 1), (0, 1, 0), (1, 0, 0), (0, 0, 1), (1, 1, 0)], |
| 298 | + ['b', 'r', 'g', 'm', 'c', 'y'], |
| 299 | + 'black', |
| 300 | + (0.5, 0.5, 0.5), |
| 301 | + # [(0.5, 0.5, 0.5)], |
| 302 | +) |
| 303 | +for ax, color in zip(axs, colors): |
| 304 | + ax.parametric( |
| 305 | + np.random.rand(5), np.random.rand(5), |
| 306 | + linewidth=2, label='label', color=color, colorbar='b', legend='b' |
| 307 | + ) |
0 commit comments