-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
46 lines (37 loc) · 1.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import tqdm
from configs import Config
from data import DataGenerator
from DBPISR import DBPISR
from learner import Learner
def train(conf):
sr_net = DBPISR(conf)
learner = Learner()
data = DataGenerator(conf, sr_net)
for iteration in tqdm.tqdm(range(conf.max_iters), ncols=60):
g_in = data.__getitem__(iteration)
sr_net.train(g_in)
learner.update(iteration, sr_net)
sr_net.finish(data.input_image)
def main():
"""The main function - performs kernel estimation (+ ZSSR) for all images in the 'test_images' folder"""
import argparse
# Parse the command line arguments
prog = argparse.ArgumentParser()
prog.add_argument('--input-dir', '-i', type=str, default='test_images/', help='path to image input directory.')
prog.add_argument('--output-dir', '-o', type=str, default='Results', help='path to image output directory.')
prog.add_argument('--X4', action='store_true', help='The wanted SR scale factor')
args = prog.parse_args()
# Run the KernelGAN sequentially on all images in the input directory
for filename in os.listdir(os.path.abspath(args.input_dir)):
conf = Config().parse(create_params(filename, args))
train(conf)
prog.exit(0)
def create_params(filename, args):
params = ['--input_image_path', os.path.join(args.input_dir, filename),
'--output_dir_path', os.path.abspath(args.output_dir)]
if args.X4:
params.append('--X4')
return params
if __name__ == '__main__':
main()