-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcollect_models.m
73 lines (56 loc) · 2.73 KB
/
collect_models.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
% Copyright [2018] [Proteek Chandan Roy]
%
% Licensed under the Apache License, Version 2.0 (the "License");
% you may not use this file except in compliance with the License.
% You may obtain a copy of the License at
%
% http://www.apache.org/licenses/LICENSE-2.0
%
% Unless required by applicable law or agreed to in writing, software
% distributed under the License is distributed on an "AS IS" BASIS,
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
% See the License for the specific language governing permissions and
% limitations under the License.
%
% Proteek Chandan Roy, 2018
% Contact: [email protected]
%==========================================================================
%======================BUILD ALL MODELS====================================
%==========================================================================
function opt = collect_models(opt, TrainIndex)
x = opt.archive(TrainIndex,:);
f = opt.archiveObj(TrainIndex, :);
normalized_f = opt.normalizedObj(TrainIndex, :);
cons = opt.archiveCons(TrainIndex,:);
cv = opt.archiveCV(TrainIndex,:); %archive constrain violation
acv = opt.archiveACV(TrainIndex,:);
y_asf = cell2mat(opt.archiveASFAll);
y_asfcv = cell2mat(opt.archiveASFCVAll);
y_asf = y_asf(TrainIndex,:);
y_asfcv = y_asfcv(TrainIndex,:);
[~,ia,~] = unique(x,'rows');
x = x(ia,:);
cons = cons(ia,:);
f = f(ia,:);
SF_VAL = opt.archiveSF_VAL(TrainIndex,:);
SF_VAL = SF_VAL(ia,:);
normalized_f = normalized_f(ia, :);
cv = cv(ia,:);
acv = acv(ia, :);
y_asf = y_asf(ia,:);
y_asfcv = y_asfcv(ia,:);
n = size(x,1);
%----------------MODEL OBJECTIVES--------------------------------------
[opt.dmodel_obj, ~] = dacefit(x, f, @regpoly2, @corrgauss, opt.theta, opt.lob, opt.upb);%model obj
[opt.dmodel_normalized_obj, ~] = dacefit(x, normalized_f, @regpoly2, @corrgauss, opt.theta, opt.lob, opt.upb);%model obj
%----------------MODEL CONSTRAINTS AND CV------------------------------
if opt.C>0
[opt.dmodel_cons, ~] = dacefit(x, cons, @regpoly2, @corrgauss, opt.theta, opt.lob, opt.upb);%model cv
[opt.dmodel_cv, ~] = dacefit(x, acv, @regpoly2, @corrgauss, opt.theta, opt.lob, opt.upb);%model cv
end
%---------------MODEL ASF FOR EACH DIRECTIONS--------------------------
[opt.dmodel_asf, ~] = dacefit(x, y_asf, @regpoly2, @corrgauss, opt.theta, opt.lob, opt.upb);%model asf
[opt.dmodel_asfcv, ~] = dacefit(x, y_asfcv, @regpoly2, @corrgauss, opt.theta, opt.lob, opt.upb);%model asfcv
%---------------MODEL SELECTION FUNCTION-------------------------------
opt.net = train_neural_network(x, SF_VAL);
end