-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcorrgauss.m
36 lines (32 loc) · 1 KB
/
corrgauss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
function [r, dr] = corrgauss(theta, d)
%CORRGAUSS Gaussian correlation function,
%
% n
% r_i = prod exp(-theta_j * d_ij^2) , i = 1,...,m
% j=1
%
% If length(theta) = 1, then the model is isotropic:
% all theta_j = theta .
%
% Call: r = corrgauss(theta, d)
% [r, dr] = corrgauss(theta, d)
%
% theta : parameters in the correlation function
% d : m*n matrix with differences between given data points
% r : correlation
% dr : m*n matrix with the Jacobian of r at x. It is
% assumed that x is given implicitly by d(i,:) = x - S(i,:),
% where S(i,:) is the i'th design site.
% Last update June 2, 2002
[m n] = size(d); % number of differences and dimension of data
if length(theta) == 1
theta = repmat(theta,1,n);
elseif length(theta) ~= n
error(sprintf('Length of theta must be 1 or %d',n))
end
td = d.^2 .* repmat(-theta(:).',m,1);
r = exp(sum(td, 2));
if nargout > 1
dr = repmat(-2*theta(:).',m,1) .* d .* repmat(r,1,n);
end