-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun_eval.py
executable file
·123 lines (98 loc) · 4.43 KB
/
run_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import argparse
from collections import defaultdict
import time
import torch
from torchvision.transforms import Normalize
from torch.utils.data import DataLoader
from tqdm import tqdm
from arguments import eval_parser
from model import GADBase
from data import MiddleburyDataset, NYUv2Dataset, DIMLDataset
from utils import to_cuda
from losses import get_loss
import time
class Evaluator:
def __init__(self, args: argparse.Namespace):
self.args = args
self.dataloader = self.get_dataloader(args)
self.model = GADBase(args.feature_extractor, Npre=args.Npre, Ntrain=args.Ntrain)
self.resume(path=args.checkpoint)
self.model.cuda().eval()
def evaluate(self):
test_stats = defaultdict(float)
num_samples = 0
self.model.eval()
with torch.no_grad():
for sample in tqdm(self.dataloader, leave=False):
sample = to_cuda(sample)
output = self.model(sample)
_, loss_dict = get_loss(output, sample)
for key in loss_dict:
test_stats[key] += loss_dict[key]
return {k: v / len(self.dataloader) for k, v in test_stats.items()}
@staticmethod
def get_dataloader(args: argparse.Namespace):
data_args = {
'crop_size': (args.crop_size, args.crop_size),
'in_memory': args.in_memory,
'max_rotation_angle': 0,
'do_horizontal_flip': False,
'crop_valid': True,
'crop_deterministic': True,
'image_transform': Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
'scaling': args.scaling
}
if args.dataset == 'DIML':
# depth_transform = Normalize([2749.64], [1154.29])
depth_transform = Normalize([0.0], [1154.29])
dataset = DIMLDataset(os.path.join(args.data_dir, 'DIML'), **data_args, split='test',
depth_transform=depth_transform)
elif args.dataset == 'Middlebury':
# depth_transform = Normalize([2296.78], [1122.7])
depth_transform = Normalize([0.0], [1122.7])
dataset = MiddleburyDataset(os.path.join(args.data_dir, 'Middlebury'), **data_args, split='test',
depth_transform=depth_transform)
elif args.dataset == 'NYUv2':
# depth_transform = Normalize([2796.32], [1386.05])
depth_transform = Normalize([0.0], [1386.05])
dataset = NYUv2Dataset(os.path.join(args.data_dir, 'NYU Depth v2'), **data_args, split='test',
depth_transform=depth_transform)
else:
raise NotImplementedError(f'Dataset {args.dataset}')
return DataLoader(dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False, drop_last=False)
def resume(self, path):
if not os.path.isfile(path):
raise RuntimeError(f'No checkpoint found at \'{path}\'')
checkpoint = torch.load(path)
if 'model' in checkpoint:
model_dict = checkpoint['model']
model_dict.pop('logk2', None) # in case of using the old codebase, pop unneccesary keys
model_dict.pop('mean_guide', None)
model_dict.pop('std_guide', None)
self.model.load_state_dict(model_dict)
else:
self.model.load_state_dict(checkpoint)
print(f'Checkpoint \'{path}\' loaded.')
def transfer(self, path):
if not os.path.isfile(path):
raise RuntimeError(f'No checkpoint found at \'{path}\'')
checkpoint = torch.load(path)
if 'model' in checkpoint:
self.model.load_state_dict(checkpoint['model'])
else:
self.model.load_state_dict(checkpoint, strict=False)
print(f'Checkpoint \'{path}\' loaded.')
if __name__ == '__main__':
args = eval_parser.parse_args()
print(eval_parser.format_values())
evaluator = Evaluator(args)
since = time.time()
stats = evaluator.evaluate()
time_elapsed = time.time() - since
# de-standardize losses and convert to cm (cm^2, respectively)
std = evaluator.dataloader.dataset.depth_transform.std[0]
stats['l1_loss'] = 0.1 * std * stats['l1_loss']
stats['mse_loss'] = 0.01 * std**2 * stats['mse_loss']
print('Evaluation completed in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print(stats)