-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmin_adv_sum.py
executable file
·210 lines (178 loc) · 6.27 KB
/
min_adv_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python3
import cplex
from cplex import Cplex
from cplex.exceptions import CplexError
import numpy as np
import matplotlib.pyplot as plt
mip_solver = Cplex()
mip_solver.set_results_stream(None)
mip_solver.set_warning_stream(None)
mip_solver.set_error_stream(None)
# mip_solver.parameters.threads.set(1)
hidden_weights = [np.load("hidden_weights_1.npy"), np.load("hidden_weights_2.npy")]
hidden_bias = [np.load("hidden_bias_1.npy"), np.load("hidden_bias_2.npy")]
output_weights = np.load("output_weights.npy")
output_bias = np.load("output_bias.npy")
#mip_solver.objective.set_sense(mip_solver.objective.sense.minimize)
input_dim = 28*28
hidden_nodes = [10,10]
output_nodes = 10
# output variables
mip_solver.variables.add(
lb = [-cplex.infinity]*output_nodes,
ub = [cplex.infinity]*output_nodes,
types = "C"*output_nodes,
names = ["o%d"%i for i in range(output_nodes)])
# input variables
mip_solver.variables.add(
lb = [0]*input_dim,
ub = [1]*input_dim,
types = "C"*input_dim,
names = ["x%d" % i for i in range(input_dim)])
# hidden layer variables
for i,n in enumerate(hidden_nodes):
mip_solver.variables.add(
lb = [0]*n,
ub = [cplex.infinity]*n,
types = "C"*n,
names = ["y(%d,%d)" % (i,j) for j in range(n)])
mip_solver.variables.add(
lb = [0]*n,
ub = [cplex.infinity]*n,
types = "C"*n,
names = ["s(%d,%d)" % (i,j) for j in range(n)])
mip_solver.variables.add(
lb = [0]*n,
ub = [1]*n,
types = "B"*n,
names = ["z(%d,%d)" % (i,j) for j in range(n)])
# relu indicator constraints
for i in range(len(hidden_nodes)):
for j in range(hidden_nodes[i]):
mip_solver.indicator_constraints.add(
indvar="z(%d,%d)" % (i,j),
complemented=1,
rhs=0.0,
sense="E",
lin_expr=(["y(%d,%d)" % (i,j)], [1.0]),
name="ind(%d,%d)1" % (i,j),
indtype=mip_solver.indicator_constraints.type_.if_)
mip_solver.indicator_constraints.add(
indvar="z(%d,%d)" % (i,j),
complemented=0,
rhs=0.0,
sense="E",
lin_expr=(["s(%d,%d)" % (i,j)], [1.0]),
name="ind(%d,%d)0" % (i,j),
indtype=mip_solver.indicator_constraints.type_.if_)
# encode hidden layers
for i in range(hidden_nodes[0]):
a_i = hidden_weights[0][:,i]
cplex_vars = ["x%d"%j for j in range(input_dim)] + ["y(0,%d)" % i, "s(0,%d)" % i]
cplex_coefs = list(a_i) + [-1, 1]
cplex_coefs = [float(v) for v in cplex_coefs]
mip_solver.linear_constraints.add(
lin_expr = [[cplex_vars, cplex_coefs]],
senses = "E",
rhs = [float(-hidden_bias[0][i])],
names = ["hidden_sum_(0,%d)" % i]
)
for i in range(hidden_nodes[1]):
a_i = hidden_weights[1][:,i]
cplex_vars = ["y(0,%d)"%j for j in range(hidden_nodes[0])] + ["y(1,%d)" % i, "s(1,%d)" % i]
cplex_coefs = list(a_i) + [-1, 1]
cplex_coefs = [float(v) for v in cplex_coefs]
mip_solver.linear_constraints.add(
lin_expr = [[cplex_vars, cplex_coefs]],
senses = "E",
rhs = [float(-hidden_bias[1][i])],
names = ["hidden_sum_(1,%d)" % i]
)
# encode output layer
for i in range(output_nodes):
out_vars = ["y(1,%d)"%j for j in range(hidden_nodes[1])] + ["o%d"%i]
out_coefs = list(output_weights[:,i]) + [-1]
out_coefs = [float(v) for v in out_coefs]
mip_solver.linear_constraints.add(
lin_expr = [[out_vars, out_coefs]],
senses = "E",
rhs = [float(-output_bias[i])],
names = ["output_sum_%d"%i]
)
X = np.load("X.npy")
Y = np.load("Y.npy")
Y_pred = np.load("Y_pred.npy")
test_index = 0
input_image = X[test_index]
prediction = max((cl,i) for (i,cl) in enumerate(Y_pred[test_index]))
mip_solver.variables.add(
lb = [0]*input_dim,
ub = [1]*input_dim,
types = "C"*input_dim,
names = ["xi%d" % i for i in range(input_dim)])
mip_solver.variables.add(
#obj = [1]*input_dim,
lb = [0]*input_dim,
ub = [1]*input_dim,
types = "C"*input_dim,
names = ["xd%d" % i for i in range(input_dim)])
# fix variables in mus and cube
mip_solver.variables.set_lower_bounds([
("xi%d"%i, x) for (i,x) in enumerate(input_image)
])
mip_solver.variables.set_upper_bounds([
("xi%d"%i, x) for (i,x) in enumerate(input_image)
])
# x_input + x_diff = x
for i in range(input_dim):
mip_solver.linear_constraints.add(
lin_expr = [[["xi%d"%i,"xd%d"%i,"x%d"%i], [1,1,-1.0]]],
senses = "E",
rhs = [0],
names = ["diff %d" % i]
)
# minimize sum_i x_diff_i^2
mip_solver.parameters.optimalitytarget.set(
mip_solver.parameters.optimalitytarget.values.optimal_global)
mip_solver.objective.set_sense(mip_solver.objective.sense.minimize)
mip_solver.objective.set_quadratic_coefficients([
["xd%d"%i, "xd%d"%i, 2] for i in range(input_dim)
])
images = []
# Loop over target labels for input_image
for target in range(10):
ct = 0
for cl in range(10):
# For classes other than target, constrain output variable to small value
if target != cl:
mip_solver.linear_constraints.add(
lin_expr = [[["o%d"%target, "o%d"%cl], [1,-1]]],
senses = "G",
rhs = [1e-6],
names = ["obj_constr_%d" % ct]
)
ct += 1
try:
mip_solver.solve()
print(mip_solver.solution.get_status_string())
opt = mip_solver.solution.get_objective_value()
print(opt)
print("Change",input_dim - opt,"pixels")
vs = mip_solver.solution.get_values(["x%d"%i for i in range(input_dim)])
images.append(np.array(vs))
except CplexError as e:
print(e)
# remove constraint on output
mip_solver.linear_constraints.delete(["obj_constr_%d"%i for i in range(ct)])
np.save("output", np.array(images))
plt.subplots(2,10)
for i,img in enumerate(images):
plt.subplot(2,10,i+1)
plt.imshow(img.reshape((28,28)), cmap='gray')
plt.title("Predict %d"%(i))
for i,img in enumerate(images):
plt.subplot(2,10,10+i+1)
diff = img - input_image
plt.imshow(diff.reshape((28,28)), cmap='summer')
plt.title("Diff")
plt.show()