forked from NuGrid/NuPyCEE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsygma.py
2893 lines (2396 loc) · 98.2 KB
/
sygma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
GCE SYGMA (Stellar Yields for Galaxy Modelling Applications) module
Functionality
=============
This tool allows the modeling of simple stellar populations. Creating a SYGMA
instance runs the simulation while extensive analysis can be done with the plot_*
functions found in the chem_evol_plot module. See the DOC directory for a detailed
documentation.
Made by
=======
v0.1 NOV2013: C. Fryer, C. Ritter
v0.2 JAN2014: C. Ritter
v0.3 APR2014: C. Ritter, J. F. Navarro, F. Herwig, C. Fryer, E. Starkenburg,
M. Pignatari, S. Jones, K. Venn1, P. A. Denissenkov & the
NuGrid collaboration
v0.4 FEB2015: C. Ritter, B. Cote
v0.5 MAY2016: C. Ritter; Note: See from now the official releases via github.
Usage
=====
Simple run example:
>>> import sygma as s
Get help with
>>> help s
Now start a calculation by providing the initial metal fraction
iniZ, the final evolution time tend, and the total mass of the SSP:
>>> s1=s.sygma(iniZ=0.0001, tend=5e9, mgal=1e5)
For more information regarding the input parameter see below or
try
>>> s.sygma?
For plotting utilize the plotting functions (plot_*) as described further
below, for example:
>>> s1.plot_totmasses()
You can write out the information about the composition of the total
ejecta of a SSP via
>>> s.write_evol_table(elements=['H','C','O'])
Yield tables are available in the NUPYCEE subdirectory
yield/textunderscore tables. Add your yield tables to
this directory and SYGMA will be able to read the table
if you have specified the $table$ variable. Only
for tables with Z=0 is the variable $pop3/textunderscore table$ used.
Both tables need yields specified in the SYGMA (and OMEGA)
yield input format. See the default table for the structure.
It is important to provide an initial abundance
file which must match the number of species provided in the yield tables.
Provide the file in the iniAbu directory inside the directory yield/extunderscore tables.
The input variable with which the table file can be specified is $iniabu/textunderscore table$.
For the necessary structure see again the default choice of that variable.
For example with artificial yields of only H-1, you can try
>>> s2 = s.sygma(iniZ=0.0001,dt=1e8,tend=1.5e10, mgal=1e11,table='yield_tables/agb_and_massive_stars_h1.txt',
sn1a_table='yield_tables/sn1a_h1.txt',iniabu_table='yield_tables/iniab1.0E-04GN93_alpha_h1.ppn.txt')
'''
# Standard package
import matplotlib.pyplot as plt
# Import the class inherited by SYGMA
from chem_evol import *
class sygma( chem_evol ):
'''
Input parameters (SYGMA)
================
sfr : string
Description of the star formation, usually an instantaneous burst.
Choices :
'input' - read and use the sfr_input file to set the percentage
of gas that is converted into stars at each timestep.
'schmidt' - use an adapted Schmidt law (see Timmes95)
Default value : 'input'
================
'''
# Combine docstrings from chem_evol with sygma docstring
__doc__ = __doc__+chem_evol.__doc__
##############################################
# Constructor #
##############################################
def __init__(self, sfr='input', \
imf_type='kroupa', alphaimf=2.35, imf_bdys=[0.1,100], \
sn1a_rate='power_law', iniZ=0.0, dt=1e6, special_timesteps=30, \
nsmerger_bdys=[8, 100], tend=13e9, mgal=1e4, transitionmass=8, iolevel=0, \
ini_alpha=True, table='yield_tables/agb_and_massive_stars_nugrid_MESAonly_fryer12delay.txt', \
hardsetZ=-1, sn1a_on=True, sn1a_table='yield_tables/sn1a_t86.txt',sn1a_energy=1e51,\
ns_merger_on=False, bhns_merger_on=False, f_binary=1.0, f_merger=0.0008, \
t_merger_max=1.0e10, m_ej_nsm = 2.5e-02, nsm_dtd_power=[],\
m_ej_bhnsm=2.5e-02, \
bhnsmerger_table = 'yield_tables/r_process_rosswog_2014.txt', \
nsmerger_table = 'yield_tables/r_process_rosswog_2014.txt', iniabu_table='', \
extra_source_on=False, nb_nsm_per_m=-1.0, t_nsm_coal=-1.0, \
extra_source_table=['yield_tables/extra_source.txt'], \
f_extra_source=[1.0], \
extra_source_mass_range=[[8,30]], \
extra_source_exclude_Z=[[]], \
pop3_table='yield_tables/popIII_heger10.txt', \
imf_bdys_pop3=[0.1,100], imf_yields_range_pop3=[10,30], \
starbursts=[], beta_pow=-1.0,gauss_dtd=[1e9,6.6e8],exp_dtd=2e9,\
nb_1a_per_m=1.0e-3,direct_norm_1a=-1, Z_trans=0.0, \
f_arfo=1.0, imf_yields_range=[1,30],exclude_masses=[], \
netyields_on=False,wiersmamod=False,yield_interp='lin', \
stellar_param_on=False, t_dtd_poly_split=-1.0, \
stellar_param_table='yield_tables/stellar_feedback_nugrid_MESAonly.txt',
tau_ferrini=False, dt_in=np.array([]),\
nsmerger_dtd_array=np.array([]), bhnsmerger_dtd_array=np.array([]),\
ytables_in=np.array([]), zm_lifetime_grid_nugrid_in=np.array([]),\
isotopes_in=np.array([]), ytables_pop3_in=np.array([]),\
zm_lifetime_grid_pop3_in=np.array([]), ytables_1a_in=np.array([]), \
mass_sampled=np.array([]), scale_cor=np.array([]),\
poly_fit_dtd_5th=np.array([]), poly_fit_range=np.array([]),\
ytables_nsmerger_in=np.array([])):
# Call the init function of the class inherited by SYGMA
chem_evol.__init__(self, imf_type=imf_type, alphaimf=alphaimf, \
imf_bdys=imf_bdys, sn1a_rate=sn1a_rate, iniZ=iniZ, dt=dt, \
special_timesteps=special_timesteps, tend=tend, mgal=mgal, \
nsmerger_bdys=nsmerger_bdys, transitionmass=transitionmass, iolevel=iolevel, \
ini_alpha=ini_alpha, table=table, hardsetZ=hardsetZ, \
sn1a_on=sn1a_on, sn1a_table=sn1a_table,sn1a_energy=sn1a_energy,\
ns_merger_on=ns_merger_on, nsmerger_table=nsmerger_table, \
f_binary=f_binary, f_merger=f_merger, \
bhns_merger_on=bhns_merger_on,
m_ej_bhnsm=m_ej_bhnsm, bhnsmerger_table=bhnsmerger_table, \
nsm_dtd_power=nsm_dtd_power, \
t_merger_max=t_merger_max, m_ej_nsm = m_ej_nsm, \
iniabu_table=iniabu_table, extra_source_on=extra_source_on, \
extra_source_table=extra_source_table,f_extra_source=f_extra_source, \
extra_source_mass_range=extra_source_mass_range, \
extra_source_exclude_Z=extra_source_exclude_Z,
pop3_table=pop3_table, \
nb_nsm_per_m=nb_nsm_per_m, t_nsm_coal=t_nsm_coal, \
imf_bdys_pop3=imf_bdys_pop3, \
imf_yields_range_pop3=imf_yields_range_pop3, \
starbursts=starbursts, beta_pow=beta_pow, \
gauss_dtd=gauss_dtd,exp_dtd=exp_dtd,\
nb_1a_per_m=nb_1a_per_m,direct_norm_1a=direct_norm_1a, \
Z_trans=Z_trans, f_arfo=f_arfo, t_dtd_poly_split=t_dtd_poly_split, \
imf_yields_range=imf_yields_range,exclude_masses=exclude_masses,\
netyields_on=netyields_on,wiersmamod=wiersmamod,\
yield_interp=yield_interp, tau_ferrini=tau_ferrini,\
ytables_in=ytables_in, nsmerger_dtd_array=nsmerger_dtd_array, \
bhnsmerger_dtd_array=bhnsmerger_dtd_array, \
zm_lifetime_grid_nugrid_in=zm_lifetime_grid_nugrid_in,\
isotopes_in=isotopes_in,ytables_pop3_in=ytables_pop3_in,\
zm_lifetime_grid_pop3_in=zm_lifetime_grid_pop3_in,\
ytables_1a_in=ytables_1a_in, ytables_nsmerger_in=ytables_nsmerger_in, \
dt_in=dt_in,stellar_param_on=stellar_param_on,\
stellar_param_table=stellar_param_table,\
poly_fit_dtd_5th=poly_fit_dtd_5th,\
poly_fit_range=poly_fit_range)
if self.need_to_quit:
return
# Announce the beginning of the simulation
print 'SYGMA run in progress..'
start_time = t_module.time()
self.start_time = start_time
# Attribute the input parameter to the current object
self.sfr = sfr
self.mass_sampled = mass_sampled
self.scale_cor = scale_cor
# Get the SFR of every timestep
self.sfrin_i = self.__sfr()
# Run the simulation
self.__run_simulation()
# Do the final update of the history class
self._update_history_final()
# Announce the end of the simulation
print ' SYGMA run completed -',self._gettime()
##############################################
# Run Simulation #
##############################################
def __run_simulation(self):
'''
This function calculates the evolution of the ejecta released by simple
stellar populations as a function of time.
'''
# For every timestep i considered in the simulation ...
for i in range(1, self.nb_timesteps+1):
# Get the current fraction of gas that turns into stars
self.sfrin = self.sfrin_i[i-1]
# Run the timestep i
self._evol_stars(i, self.mass_sampled, self.scale_cor)
# Get the new metallicity of the gas
self.zmetal = self._getmetallicity(i)
# Update the history class
self._update_history(i)
##############################################
# SFR #
##############################################
def __sfr(self):
'''
This function calculates the percentage of gas mass which transforms into
stars at every timestep, and then returns the result in an array.
'''
# Declaration of the array containing the mass fraction converted
# into stars at every timestep i.
sfr_i = []
# Output information
if self.iolevel >= 3:
print 'Entering sfr routine'
# For every timestep i considered in the simulation ...
for i in range(1, self.nb_timesteps+1):
# If an array is used to generate starbursts ...
if len(self.starbursts) > 0:
if len(self.starbursts) >= i:
# Use the input value
sfr_i.append(self.starbursts[i-1])
self.history.sfr.append(sfr_i[i-1])
# If an input file is read for the SFR ...
if self.sfr == 'input':
# Open the input file, read all lines, and close the file
f1 = open(global_path+'sfr_input')
lines = f1.readlines()
f1.close()
# The number of lines needs to be at least equal to the
# number of timesteps
if self.nb_timesteps > (len(lines)):
print 'Error - SFR input file does not' \
'provide enough timesteps'
return
# Copy the SFR (mass fraction) of every timestep
for k in range(len(lines)):
if k == (i-1):
sfr_i.append(float(lines[k]))
self.history.sfr.append(sfr_i[i-1])
break
# If the Schmidt law is used (see Timmes98) ...
if self.sfr == 'schmidt':
# Calculate the mass of available gas
mgas = sum(ymgal[i-1])
# Calculate the SFR according to the current gas fraction
B = 2.8 * self.mgal * (mgas / self.mgal)**2 # [Mo/Gyr]
sfr_i.append(B/mgas) * (timesteps[i-1] / 1.e9) # mass fraction
self.history.sfr.append(sfr_i[i-1])
# Return the SFR (mass fraction) of every timestep
return sfr_i
###############################################################################################
######################## Here start the analysis methods ######################################
###############################################################################################
def write_stellar_param_table(self,table_name='gce_stellar_param_table.txt', path="evol_tables",interact=False):
'''
Writes out evolution of stellar parameter such as luminosity and kinetic energy.
Stellar parameter quantities are available via <sygma instance>.stellar_param_attrs.
Table structure:
&Age &Quantity1 &Quantity2 ...
&0.000E+00 &0.000E+00 &0.000E+00
&0.000E+00 &0.000E+00 &0.000E+00
Parameters
----------
table_name : string,optional
Name of table. If you use a notebook version, setting a name
is not necessary.
path : string
directory where to save table.
interact: bool
If true, saves file in current directory (notebook dir) and creates HTML link useful in ipython notebook environment
Examples
----------
>>> s.write_evol_table(table_name='testoutput.txt')
'''
time_evol=self.history.age
#get available quantities
parameter=self.stellar_param_attrs
parameter_values=self.stellar_param
metal_evol=self.history.metallicity
#header
out='&Age [yr] '
for i in range(len(parameter)):
out+= ('&'+parameter[i]+((20-len(parameter[i]))*' '))
out = out + '\n'
out+=('&'+'{:.3E}'.format(time_evol[0]))
for i in range(len(parameter_values)):
out+= ( ' &'+ '{:.3E}'.format(0.))
out = out + '\n'
#data
for t in range(len(parameter_values[0])):
out+=('&'+'{:.3E}'.format(time_evol[t+1]))
for i in range(len(parameter_values)):
out+= ( ' &'+ '{:.3E}'.format(parameter_values[i][t]))
out+='\n'
if interact==True:
import random
randnum=random.randrange(10000,99999)
name=table_name+str(randnum)+'.txt'
#f1=open(global_path+'evol_tables/'+name,'w')
f1=open(name,'w')
f1.write(out)
f1.close()
print 'Created table '+name+'.'
print 'Download the table using the following link:'
#from IPython.display import HTML
#from IPython import display
from IPython.core.display import HTML
import IPython.display as display
#print help(HTML)
#return HTML("""<a href="evol_tables/download.php?file="""+name+"""">Download</a>""")
#test=
#return display.FileLink('../../nugrid/SYGMA/SYGMA_online/SYGMA_dev/evol_table/'+name)
#if interact==False:
#return HTML("""<a href="""+global_path+"""/evol_tables/"""+name+""">Download</a>""")
return HTML("""<a href="""+name+""">Download</a>""")
#else:
# return name
else:
print 'file '+table_name+' saved in subdirectory evol_tables.'
f1=open(path+'/'+table_name,'w')
f1.write(out)
f1.close()
def plot_stellar_param(self,fig=8,quantity='Ekindot_wind',label='',marker='o',color='r',shape='-',fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14,markevery=1):
'''
Plots the evolution of stellar parameter as provided as input in stellar parameter table (stellar_param_table variable).
Parameters
----------
quantity: string
Name of stellar parameter of interest. Check for available parameter via <sygma instance>.stellar_param_attrs
Examples
----------
>>> s.plot_stellar_param(quantity='Ekin_wind')
'''
#in case stellar parameter are not used.
if self.stellar_param_on==False:
print 'Set stellar_param_on to true to use this function.'
return
if not quantity in self.stellar_param_attrs:
print 'Quantity ',quantity,' not provided in yield table'
return
idx=self.stellar_param_attrs.index(quantity)
quantity_evol=self.stellar_param[idx]
age=self.history.age[1:]
plt.figure(fig)
plt.plot(age,quantity_evol,label=label,marker=marker,color=color,linestyle=shape,markevery=markevery)
ax=plt.gca()
self.__fig_standard(ax=ax,fontsize=fontsize,labelsize=labelsize,rspace=rspace, bspace=bspace,legend_fontsize=legend_fontsize)
plt.ylabel('log-scaled '+quantity)
plt.xlabel('log-scaled age [yr]')
plt.yscale('log')
plt.xscale('log')
def plot_metallicity(self,source='all',label='',marker='o',color='r',shape='-',fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14):
'''
Plots the metal fraction defined as the sum of all isotopes except
H1, H2, H3, He3, He4, Li6, Li7.
Parameters
----------
source : string
Specifies if yields come from
all sources ('all'), including
AGB+SN1a, massive stars. Or from
distinctive sources:
only agb stars ('agb'),
only SN1a ('SN1a')
only massive stars ('massive')
Examples
----------
>>> s.plot_metallicity(source='all')
'''
iso_non_metal=['H-1','H-2','H-3','He-3','He-4','Li-6','Li-7']
idx_iso_non_metal=[]
for h in range(len(iso_non_metal)):
if iso_non_metal[h] in self.history.isotopes:
idx_iso_non_metal.append(self.history.isotopes.index(iso_non_metal[h]))
x=self.history.age
if source == 'all':
yields_evol=self.history.ism_iso_yield
elif source =='agb':
yields_evol=self.history.ism_iso_yield_agb
elif source == 'sn1a':
yields_evol=self.history.ism_iso_yield_1a
elif source == 'massive':
yields_evol=self.history.ism_iso_yield_massive
Z_evol=[]
for k in range(len(yields_evol)):
isotopes=self.history.isotopes
nonmetals=0
for h in range(len(idx_iso_non_metal)):
nonmetals=nonmetals + yields_evol[k][idx_iso_non_metal[h]]
Z_step=(sum(yields_evol[k]) - nonmetals)/sum(yields_evol[k])
Z_evol.append(Z_step)
plt.plot(x,Z_evol,label=label)
plt.xscale('log')
plt.xlabel('age [yr]')
plt.ylabel('metal fraction Z')
#self.__fig_standard(ax=ax,fontsize=fontsize,labelsize=labelsize,rspace=rspace, bspace=bspace,legend_fontsize=legend_fontsize)
def plot_table_param(self,fig=8,ax='',xaxis='mini',quantity='Lifetime',iniZ=0.02,masses=[],label='',marker='o',color='r',shape='-',table='yield_tables/isotope_yield_table.txt',fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14):
'''
Plots the yield table quantities such as lifetimes versus initial mass as given in yield input tables.
Parameters
----------
xaxis : string
if 'mini': use initial mass
if 'time': use lifetime
iniZ : float
Metallicity of interest
masses: list
List of initial masses to be plotted
table: string
Yield table
Examples
----------
>>> s.plot_table_param(quantity='Lifetime')
'''
import read_yields as ry
import re
y_table=ry.read_nugrid_yields(global_path+table)
plt.figure(fig)
# find all available masses
if len(masses)==0:
allheader=y_table.table_mz
for k in range(len(allheader)):
if str(iniZ) in allheader[k]:
mfound=float(allheader[k].split(',')[0].split('=')[1])
masses.append(mfound)
#print 'Found masses: ',masses
if xaxis=='mini':
x=masses
elif xaxis=='time':
x=[]
for k in range(len(masses)):
x.append(y_table.get(Z=iniZ, M=masses[k], quantity='Lifetime'))
param=[]
for k in range(len(masses)):
param.append(y_table.get(Z=iniZ, M=masses[k], quantity=quantity))
if type(ax)==str:
ax=plt.gca()
ax.plot(x,param,label=label,marker=marker,color=color,linestyle=shape)
ax=plt.gca()
self.__fig_standard(ax=ax,fontsize=fontsize,labelsize=labelsize,rspace=rspace, bspace=bspace,legend_fontsize=legend_fontsize)
plt.ylabel(quantity)
if xaxis=='mini':
plt.xlabel('initial mass [M$_{\odot}$]')
elif xaxis=='time':
plt.xlabel('lifetime [yr]')
plt.yscale('log')
def plot_table_remnant(self,fig=8,xaxis='mini',iniZ=0.02,masses=[],label='',marker='o',color='r',shape='-',table='yield_tables/isotope_yield_table.txt',fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14):
'''
Plots the remnant masses versus initial mass given in yield tables.
Parameters
----------
xaxis : string
if 'mini': use initial mass; if of the form [specie1/specie2] use spec. notation of
yaxis : string
iniZ : float
Metallicity to choose.
Examples
----------
>>> s.plot_table_remnant(iniZ=0.02)
'''
import read_yields as ry
import re
y_table=ry.read_nugrid_yields(global_path+table)
plt.figure(fig)
# find all available masses
if len(masses)==0:
allheader=y_table.table_mz
for k in range(len(allheader)):
if str(iniZ) in allheader[k]:
mfound=float(allheader[k].split(',')[0].split('=')[1])
masses.append(mfound)
#print 'Found masses: ',masses
mfinals=[]
for k in range(len(masses)):
mfinals.append(y_table.get(Z=iniZ, M=masses[k], quantity='Mfinal'))
plt.plot(masses,mfinals,label=label,marker=marker,color=color,linestyle=shape)
ax=plt.gca()
self.__fig_standard(ax=ax,fontsize=fontsize,labelsize=labelsize,rspace=rspace, bspace=bspace,legend_fontsize=legend_fontsize)
plt.ylabel('remnant mass [M$_{\odot}$]')
plt.xlabel('initial mass [M$_{\odot}$]')
plt.minorticks_on()
def plot_yield_mtot(self,fig=8,plot_imf_mass_ranges=True,fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14):
'''
Plots total mass ejected by stars (!). To distinguish between the total mass of yields from the table and fitted total mass
Parameters
----------
plot_imf_mass_ranges : boolean
If true plots the initial mass ranges for which yields are consider.
Examples
----------
>>> s.plot_yield_mtot()
'''
plt.figure(8)
yall=[]
for k in range(len(self.yields)):
yall.append(sum(self.yields[k]))
mall=self.m_stars
x=[]
ms=[]
for m in np.arange(self.imf_bdys[0],self.imf_bdys[-1],1):
x.append(self.func_total_ejecta(m))
ms.append(m)
plt.plot(ms,x,linestyle=':',label='fit')
plt.plot(mall,yall,marker='x',color='k',linestyle='',label='input yield grid')
plt.xlabel('initial mass [M$_{\odot}$]')
plt.ylabel('total yields [M$_{\odot}$]')
plt.legend()
if plot_imf_mass_ranges==True:
ranges=self.imf_mass_ranges
for k in range(len(ranges)):
plt.vlines(ranges[k][0],0,100,linestyle='--')
plt.vlines(ranges[-1][1],0,100,linestyle='--')
ax=plt.gca()
self.__fig_standard(ax=ax,fontsize=fontsize,labelsize=labelsize,rspace=rspace, bspace=bspace,legend_fontsize=legend_fontsize)
def plot_table_yield_mass(self,fig=8,xaxis='mini',yaxis='C-12',iniZ=0.0001,netyields=False,masses=[],label='',marker='o',color='r',shape='-',table='yield_tables/isotope_yield_table.txt',fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14):
'''
Plots yields for isotopes given in yield tables.
Parameters
----------
xaxis : string
if 'mini' use initial mass on x axis
yaxis : string
isotope to plot.
Examples
----------
>>> s.plot_iso_ratio(yaxis='C-12')
'''
# find all available masses
if len(masses)==0:
allheader=y_table.table_mz
for k in range(len(allheader)):
if str(iniZ) in allheader[k]:
mfound=float(allheader[k].split(',')[0].split('=')[1])
masses.append(mfound)
#print 'Found masses: ',masses
if True:
x=[]
y=[]
for mini in masses:
x.append(mini)
plt.xlabel('initial mass [M$_{\odot}$]')
headerx='Mini/Msun'
if netyields==True:
y_ini=ini_isos_frac[ini_isos.index(yaxis)]
miniadd=(y_ini*(mini-mfinal))
y.append(y_delay.get(M=mini,Z=Z,specie=yaxis) + miniadd)
else:
y.append(y_delay.get(M=mini,Z=Z,specie=yaxis))
plt.ylabel('yield [M$_{\odot}$]')
headery='Yield [Msun]'
if len(label)==0:
plt.plot(x,y,label='Z='+str(Z),marker=marker,color=color,linestyle=shape)
else:
plt.plot(x,y,label=label,marker=marker,color=color,linestyle=shape)
ax=plt.gca()
self.__fig_standard(ax=ax,fontsize=fontsize,labelsize=labelsize,rspace=rspace, bspace=bspace,legend_fontsize=legend_fontsize)
#return x,y
self.__save_data(header=[headerx,headery],data=[x,y])
def plot_net_yields(self,fig=91,species='[C-12/Fe-56]',netyields_iniabu='yield_tables/iniabu/iniab_solar_Wiersma.ppn'):
'''
Plots net yields as calculated in the code when using netyields_on=True.
To be used only with net yield input.
Parameters
----------
species : string
Isotope ratio in spectroscopic notation.
Examples
----------
>>> s.plot_net_yields(species='[C-12/Fe-56]')
'''
iniabu=ry.iniabu(global_path+'/'+netyields_iniabu)
isonames=iniabu.names
specie1=species.split('/')[0][1:]
specie2=species.split('/')[1][:-1]
for k in range(len(isonames)):
elem=re.split('(\d+)',isonames[k])[0].strip().capitalize()
A=int(re.split('(\d+)',isonames[k])[1])
if specie1 == elem+'-'+str(A):
x1sol=iniabu.iso_abundance(elem+'-'+str(A))
if specie2 == elem+'-'+str(A):
x2sol=iniabu.iso_abundance(elem+'-'+str(A))
specie1=species.split('/')[0][1:]
specie2=species.split('/')[1][:-1]
idx1=self.history.isotopes.index(specie1)
idx2=self.history.isotopes.index(specie2)
y=[]
x=range(len(self.history.netyields))
x=self.history.age
x=self.history.netyields_masses
for k in range(len(self.history.netyields)):
x1=self.history.netyields[k][idx1]/sum(self.history.netyields[k])
x2=self.history.netyields[k][idx2]/sum(self.history.netyields[k])
y.append(np.log10(x1/x2 / (x1sol/x2sol)))
print 'create figure'
plt.figure(fig)
plt.plot(x,y,marker='o')
plt.ylabel(species)
plt.xlabel('initial mass [M$_{\odot}$]')
#plt.xscale('log')
def plot_table_yield(self,fig=8,xaxis='mini',yaxis='C-12',iniZ=0.0001,netyields=False,masses=[],label='',marker='o',color='r',shape='-',table='yield_tables/isotope_yield_table.txt',fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14,solar_ab='',netyields_iniabu=''):
'''
Plots the yields of the yield input grid versus initial mass or
Z or [Fe/H]. Yield can be plotted in solar masses or in spectroscopic notation.
Parameters
----------
xaxis : string
if 'mini': use initial mass; if of the form [specie1/specie2] use spec. notation
yaxis : string
specifies isotopes or elements with 'C-12' or 'C': plot yield of isotope;
if chosen spectros: use form [specie3/specie4]
iniZ : float
specifies the metallicity to be plotted
masses : list
if empty plot all available masses for metallicity iniZ; else choose only masses in list masses
netyields : bool
if true assume net yields in table and add corresponding initial contribution to get total yields
table : string
table to plot data from; default sygma input table
Examples
----------
>>> s.plot_iso_ratio(yaxis='C-12')
'''
import read_yields as ry
import re
y_table=ry.read_nugrid_yields(global_path+table)
plt.figure(fig, figsize=(fsize[0],fsize[1]))
spec=False
if '[' in yaxis:
spec=True
# for spectroscopic notation need initial abundance of elements or isotopes
if True: #spec==True or '[' in xaxis:
ini_list=['iniab1.0E-02GN93.ppn' ,'iniab1.0E-03GN93_alpha.ppn','iniab1.0E-04GN93_alpha.ppn','iniab2.0E-02GN93.ppn' ,'iniab6.0E-03GN93_alpha.ppn','iniab1.0E-05GN93_alpha_scaled.ppn','iniab1.0E-06GN93_alpha_scaled.ppn']
iniZs=[0.01,0.001,0.0001,0.02,0.006,0.00001,0.000001]
ymgal=[]
if len(netyields_iniabu)==0:
for metal in iniZs:
if metal == float(iniZ):
iniabu=ry.iniabu(global_path+'yield_tables/iniabu/'+ini_list[iniZs.index(iniZ)])
else:
iniabu=ry.iniabu(global_path+'/'+netyields_iniabu)
isonames=iniabu.names
#get initial elements
#if not '-' in yaxis:
if True:
ini_elems=[]
ini_elems_frac=[]
for k in range(len(isonames)):
elem=re.split('(\d+)',isonames[k])[0].strip().capitalize()
A=int(re.split('(\d+)',isonames[k])[1])
if elem not in ini_elems:
ini_elems.append(elem)
ini_elems_frac.append(iniabu.iso_abundance(elem+'-'+str(A)))
else:
ini_elems_frac[ini_elems.index(elem)]+=iniabu.iso_abundance(elem+'-'+str(A))
#ini_species=ini_elems
#ini_species_frac=ini_elems_frac
#get isotopes
if True:
ini_isos=[]
ini_isos_frac=[]
for k in range(len(isonames)):
elem=re.split('(\d+)',isonames[k])[0].strip().capitalize()
A=int(re.split('(\d+)',isonames[k])[1])
newname=elem+'-'+str(A)
ini_isos.append(newname)
ini_isos_frac.append(iniabu.iso_abundance(elem+'-'+str(A)))
#ini_species=ini_isos
#ini_species_frac=ini_isos_frac
####Get solar Z either from
if len(solar_ab) ==0:
iniabu=ry.iniabu(global_path+'yield_tables/iniabu/iniab2.0E-02GN93.ppn')
else:
iniabu=ry.iniabu(global_path+solar_ab)
#ini_elems=[]
ini_elems_frac_sol=[]
ini_elems=[]
for k in range(len(isonames)):
elem=re.split('(\d+)',isonames[k])[0].strip().capitalize()
A=int(re.split('(\d+)',isonames[k])[1])
if elem not in ini_elems:
ini_elems.append(elem)
ini_elems_frac_sol.append(iniabu.iso_abundance(elem+'-'+str(A)))
else:
ini_elems_frac_sol[ini_elems.index(elem)]+=iniabu.iso_abundance(elem+'-'+str(A))
ini_isos_frac_sol=[]
for k in range(len(isonames)):
elem=re.split('(\d+)',isonames[k])[0].strip().capitalize()
A=int(re.split('(\d+)',isonames[k])[1])
newname=elem+'-'+str(A)
#ini_isos.append(newname)
ini_isos_frac_sol.append(iniabu.iso_abundance(elem+'-'+str(A)))
#ini_species=ini_isos
#ini_species_frac=ini_isos_frac
#print 'test'
#prepare yield table data
#find all available masses
if len(masses)==0:
allheader=y_table.table_mz
for k in range(len(allheader)):
if str(iniZ) in allheader[k]:
mfound=float(allheader[k].split(',')[0].split('=')[1])
masses.append(mfound)
print 'Found masses: ',masses
idx1=-1
Z=iniZ
y_delay=y_table
if True:
x=[]
y=[]
for mini in masses:
idx1+=1
totmass=sum(y_delay.get(M=mini,Z=Z,quantity='Yields'))
mfinal = y_delay.get(Z=Z, M=mini, quantity='Mfinal')
if '[' in xaxis:
x1=xaxis.split('/')[0][1:]
x2=xaxis.split('/')[1][:-1]
#print 'for xaxis',x1,x2
if '-' in xaxis:
ini_species=ini_isos
ini_species_frac=ini_isos_frac
yx2=y_delay.get(M=mini,Z=Z,specie=x2)
yx1=y_delay.get(M=mini,Z=Z,specie=x1)
ini_species_frac_sol=ini_iso_frac_sol
else:
ini_species=ini_elems
ini_species_frac=ini_elems_frac
ini_species_frac_sol=ini_elem_frac_sol
isoavail=y_delay.get(M=mini,Z=Z,quantity='Isotopes')
yx2=0
yx1=0
#sum up isotopes to get elements
#print isoavail
#print mini,Z
for k in range(len(isoavail)):
if x1 == isoavail[k].split('-')[0]:
yx1+=y_delay.get(M=mini,Z=Z,specie=isoavail[k])
if x2 == isoavail[k].split('-')[0]:
yx2+=y_delay.get(M=mini,Z=Z,specie=isoavail[k])
x1_ini=ini_species_frac[ini_species.index(x1)]
x2_ini=ini_species_frac[ini_species.index(x2)]
x1_ini_sol=ini_species_frac_sol[ini_species.index(x1)]
x2_ini_sol=ini_species_frac_sol[ini_species.index(x2)]
if netyields==True:
miniadd=(x1_ini*(mini-mfinal))
yx1_frac=( yx1+miniadd )/totmass
miniadd=(x2_ini*(m-mfinal))
yx2_frac=( yx2+miniadd )/totmass
else:
yx2_frac=yx2/totmass
yx1_frac=yx1/totmass
x.append( np.log10( yx1_frac/yx2_frac * x2_ini_sol/x1_ini_sol) )
plt.xlabel(xaxis)
headerx=xaxis
elif 'mini' == xaxis:
x.append(mini)
plt.xlabel('initial mass [M$_{\odot}$]')
headerx='Mini/Msun'
else:
return 'wrong input'
# x.append(y_delay.get(M=mini,Z=Z,specie=xaxis))
if '[' in yaxis:
y1=yaxis.split('/')[0][1:]
y2=yaxis.split('/')[1][:-1]
if '-' in yaxis:
ini_species=ini_isos
ini_species_frac=ini_isos_frac
ini_species_frac_sol=ini_isos_frac_sol
yy2=y_delay.get(M=mini,Z=Z,specie=y2)
yy1=y_delay.get(M=mini,Z=Z,specie=y1)
else:
ini_species=ini_elems
ini_species_frac=ini_elems_frac
ini_species_frac_sol=ini_elems_frac_sol
isoavail=y_delay.get(M=mini,Z=Z,quantity='Isotopes')
yy2=0
yy1=0
#sum up isotopes to get elements
for k in range(len(isoavail)):
if y1 == isoavail[k].split('-')[0]:
yy1+=y_delay.get(M=mini,Z=Z,specie=isoavail[k])
if y2 == isoavail[k].split('-')[0]:
yy2+=y_delay.get(M=mini,Z=Z,specie=isoavail[k])
y1_ini=ini_species_frac[ini_species.index(y1)]
y2_ini=ini_species_frac[ini_species.index(y2)]
y1_ini_sol=ini_species_frac_sol[ini_species.index(y1)]
y2_ini_sol=ini_species_frac_sol[ini_species.index(y2)]
yy1_1=yy1
yy2_1=yy2
if netyields==True:
miniadd=(y1_ini*(mini-mfinal))
yy1_1=( yy1+miniadd )
miniadd=(y2_ini*(mini-mfinal))
yy2_1=( yy2+miniadd )
if yy1_1==0 or yy2_1==0:
print 'Zeros for ',mini,' skip mass ',yy1,yy2