-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspace_invaders.py
79 lines (71 loc) · 2.31 KB
/
space_invaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import matplotlib.pyplot as plt
import cv2
import gym
from keras.models import Sequential
from keras.layers import Flatten, Conv2D, Dense, Activation
import random
def preprocess(obs):
obs = np.array(obs, dtype=np.uint8)
obs = cv2.resize(obs, (84, 110))
obs = cv2.cvtColor(obs, cv2.COLOR_BGR2GRAY)
obs = obs[26:110,:]
_, obs = cv2.threshold(obs, 1, 255, cv2.THRESH_BINARY)
return np.reshape(obs, (1, 84, 84, 1)) / 255
#Set up the environment
env = gym.make('SpaceInvaders-v0')
state_space = (84, 84, 1)
action_space = 6
#Create the network
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(8, 8), strides=4, input_shape=state_space))
model.add(Activation('relu'))
model.add(Conv2D(filters=64, kernel_size=(4,4), strides=2))
model.add(Activation('relu'))
model.add(Conv2D(filters=64, kernel_size=(3,3), strides=1))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(action_space))
model.compile(loss='mse', optimizer='adam')
#Training parameters
num_episodes = 1000
epsilon = 0.25
anneal = 0.0025
exp_buffer = []
batch_size = 100
gamma = 0.99
#Training
for i in range(num_episodes):
obs = env.reset()
obs = preprocess(obs)
done = False
total_reward = 0
while not done:
if random.random() < epsilon:
action = random.randint(0, action_space-1)
else:
q_values = model.predict(obs)
action = np.argmax(q_values)
obs1, reward, done, _ = env.step(action)
obs1 = preprocess(obs1)
total_reward += reward
exp_buffer.append((obs,action,reward,obs1,done))
obs = obs1
if len(exp_buffer) > batch_size:
minibatch = random.sample(exp_buffer, batch_size)
inputs = []
q_values = []
for m in minibatch:
obs, action, reward, obs1, done = m
inputs.append(obs)
q_vals = model.predict(obs)
if done:
q_vals[0][action] = reward
else:
q_vals[0][action] = reward + gamma * np.max(model.predict(obs))
q_values.append(q_vals)
inputs = np.array(inputs).reshape((batch_size, 84, 84, 1))
q_values = np.array(q_values).reshape((batch_size, action_space))
model.fit(inputs, q_values, verbose=False)
epsilon -= anneal
print(total_reward)