-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathoProvers.pro
142 lines (104 loc) · 3.73 KB
/
oProvers.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
% other, possibly incorrect provers
obprove(T):-oljb(T,[]).
%oljb(A,Vs):-ppp((Vs-->A)),fail. % for trainig only
oljb(A,Vs):-memberchk(A,Vs),!.
oljb((A->B),Vs):-!,oljb(B,[A|Vs]).
oljb(G,Vs1):-
select((A->B),Vs1,Vs2),
oljb_imp(A,B,Vs2),
!,
oljb(G,[B|Vs2]).
oljb_imp((C->D),B,Vs):-!,oljb((C->D),[(D->B)|Vs]).
oljb_imp(A,_,Vs):-memberchk(A,Vs).
cmprove(E):-
cmints(E,H,Gs),
%ppp((H:-Gs)),
%maplist(simplify,Gs,Bs),
ppp(E),nl,ppp((H:-Gs)),nl,
ljfa(H,Gs).
/*
% still buggy attempt to write prover in terms of <->, v, and false
bdprove(T):-expand_full_neg(T,A),toDisjBiCond(A,B),ljbd(B).
ljbd(T):- ljbd(T,[]).
%ljbd(G,Vs):-spy('ljf',G,Vs),fail.
ljbd(A,Vs):-memberchk(A,Vs),!.
ljbd(_,Vs):-memberchk(false,Vs),!.
ljbd(A<->B,Vs):-!,ljbd(B,[A|Vs]),ljbd(A,[B|Vs]).
%ljbd((A->B),Vs):-!,ljbd(B,[A|Vs]).
ljbd((AB),Vs):-is_impl(AB,A,B),!,ljbd(B,[A|Vs]).
%ljbd(A & B,Vs):-!,ljbd(A,Vs),ljbd(B,Vs).
ljbd(AB,Vs):-is_conj(AB,A,B),!,ljbd(A,Vs),ljbd(B,Vs).
ljbd(G,Vs1):- % atomic or disj or false
select(Red,Vs1,Vs2),
ljbd_reduce(Red,G,Vs2,Vs3),
!,
ljbd(G,Vs3).
ljbd(A v B, Vs):-(ljbd(A,Vs);ljbd(B,Vs)),!.
ljbd_reduce((AB),_,Vs1,Vs2):-is_impl(AB,A,B),!,ljbd_imp(A,B,Vs1,Vs2).
%ljbd_reduce((A & B),_,Vs,[A,B|Vs]):-!.
ljbd_reduce((AB),_,Vs,[A,B|Vs]):-is_conj(AB,A,B),!.
%ljbd_reduce((A<->B),_,Vs,[(A->B),(B->A)|Vs]):-!.
ljbd_reduce((A<->B),_,Vs,[(A<->B)|Vs]):-!.
ljbd_reduce((A v B),G,Vs,[B|Vs]):-ljbd(G,[A|Vs]).
ljbd_imp((CD),B,Vs,[B|Vs]):-is_impl(CD,_C,D),!,ljbd((CD),[((D v B)<->B)|Vs]).
%ljbd_imp((C & D),B,Vs,[(C->(D->B))|Vs]):-!.
ljbd_imp((CD),B,Vs,[(C->(D->B))|Vs]):-is_conj(CD,C,D),!.
ljbd_imp((C v D),B,Vs,[(C->B),(D->B)|Vs]):-!.
%ljbd_imp((C<->D),B,Vs,[((C->D)->((D->C)->B))|Vs]):-!.
ljbd_imp(CD,B,Vs,[((CD v B)<->B)|Vs]):-CD=(_C<->_D),!.
ljbd_imp(A,B,Vs,[B|Vs]):-memberchk(A,Vs).
is_impl(((X v Y)<->Y),X,Y).
is_impl(((Y v X)<->Y),X,Y).
is_impl((Y<->(X v Y)),X,Y).
is_impl((Y<->(Y v X)),X,Y).
is_conj((X v Y)<->(X<->Y),X,Y).
is_conj((Y v X)<->(X<->Y),X,Y).
is_conj((X<->Y)<->(X v Y),X,Y).
is_conj((Y<->X)<->(X v Y),X,Y).
*/
% intuitionistic tableau prover - Fitting 1969
% sound but apparently incomplete, at least when restricted
% to implicational fragment - see following examples
% - possible bug in this implementation?
% should succeed
rgo:-ftprove((((((0->1)->0)->0)->1)->1)).
rgo1:-ftprove((0->((((1->2)->1)->1)->2)->2)).
rgo2:-ftprove( (0->0->((((1->2)->1)->1)->2)->2)).
rgo3:-ftprove((0->0->0->((((1->2)->1)->1)->2)->2)).
rgo4:-ftprove((0->0->0->0->((((1->2)->1)->1)->2)->2)).
rgo5:-ftprove((0->0->1->0->((((2->3)->2)->2)->3)->3)).
rgo6:-ftprove((0->1->2->3->((((4->5)->4)->4)->5)->5)).
rgo7:-ftprove(0->0->1->2->1->((((3->4)->3)->3)->4)->4).
rgo8:-ftprove(0->1->2->3->4->((((5->6)->5)->5)->6)->6).
rgo9:-ftprove(0->1->2->3->4->5->((((6->7)->6)->6)->7)->7).
unsound_ft(N,F):-allImpFormulas(N,F),ftprove(F),\+eprove(F).
incomplete_ft(N,F):-allImpFormulas(N,F),eprove(F),\+ftprove(F).
% prover
ftprove(X):-redstart(X,_Rss),!.
redstart(X,Rss):-redloop([[f:X]],Rss).
redend(Fss):-
forall(
member(Fs,Fss),
closed(Fs)
).
closed(Xs):-select(t:A,Xs,Ys),memberchk(f:A,Ys),!.
redloop(Fss,Rss):-%ppp(Fss),
redend(Fss),!,Rss=Fss.
redloop(Fss,Rss):-redstep(Fss,Gss),redloop(Gss,Rss).
redstep(Fss,Hss):-
select(Fs,Fss,Gss),
select(X,Fs,Xs),
( X=f:(A->B),trim_fs(Xs,TXs),Gs=[t:A,f:B|TXs],Hss=[Gs|Gss]
; X=t:(A->B),Gs1=[f:A|Xs],Gs2=[t:B|Xs],Hss=[Gs1,Gs2|Gss]
).
trim_fs([],[]).
trim_fs([f:_|Xs],Ys):-trim_fs(Xs,Ys).
trim_fs([t:X|Xs],[t:X|Ys]):-trim_fs(Xs,Ys).
% using this breaks soundess
trim_fs([],[],_).
trim_fs([f:(A->B)|Xs],[f:(A->B)|Ys],(f:(A->_))):-!,
atomic(A),atomic(B),
ppp(A->B),
trim_fs(Xs,Ys,f:(A->B)).
trim_fs([f:X|Xs],Ys,Y):-ppp(trim=X),trim_fs(Xs,Ys,Y).
trim_fs([t:X|Xs],[t:X|Ys],Y):-trim_fs(Xs,Ys,Y).