-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFullyConnectedModel.py
50 lines (41 loc) · 1.6 KB
/
FullyConnectedModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn as nn
import torch.nn.functional as F
class FCNormalGamma(nn.Module):
def __init__(self, n_input, n_out_tasks=1):
super(FCNormalGamma, self).__init__()
self.n_in = n_input
self.n_out = 4 * n_out_tasks
self.n_tasks = n_out_tasks
self.l1 = nn.Linear(self.n_in, self.n_out)
def forward(self, x):
x = self.l1(x)
if len(x.shape) == 1:
gamma, lognu, logalpha, logbeta = torch.split(
x, self.n_tasks, dim=0)
else:
gamma, lognu, logalpha, logbeta = torch.split(
x, self.n_tasks, dim=1)
nu = F.softplus(lognu)
alpha = F.softplus(logalpha) + 1.
beta = F.softplus(logbeta)
return torch.stack([gamma, nu, alpha, beta]).to(x.device)
class EvidentialRegression(nn.Module):
def __init__(self, input_size, num_neurons=50, num_layers=1, activation=F.relu):
super(EvidentialRegression, self).__init__()
self.activation = activation
self.num_layers = num_layers
self.in_fc = nn.Linear(input_size, num_neurons)
self.fcs = nn.ModuleList(
[nn.Linear(num_neurons, num_neurons) for _ in range(num_layers-1)])
self.fcNormalGamma = FCNormalGamma(num_neurons)
def forward(self, x):
x = self.activation(self.in_fc(x))
for hidden_layer in self.fcs:
x = self.activation(hidden_layer(x))
x = self.fcNormalGamma(x)
return x.squeeze()
if __name__ == "__main__":
model = EvidentialRegression(1)
x = torch.rand(64, 1)
print(model(x), model(x).size())