forked from pytorch/builder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstall_cuda.sh
195 lines (167 loc) · 10.4 KB
/
install_cuda.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/bin/bash
set -ex
function install_116 {
echo "Installing CUDA 11.6 and CuDNN 8.3"
rm -rf /usr/local/cuda-11.6 /usr/local/cuda
# install CUDA 11.6.2 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/11.6.2/local_installers/cuda_11.6.2_510.47.03_linux.run
chmod +x cuda_11.6.2_510.47.03_linux.run
./cuda_11.6.2_510.47.03_linux.run --toolkit --silent
rm -f cuda_11.6.2_510.47.03_linux.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-11.6 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/redist/cudnn/v8.3.2/local_installers/11.5/cudnn-linux-x86_64-8.3.2.44_cuda11.5-archive.tar.xz -O cudnn-linux-x86_64-8.3.2.44_cuda11.5-archive.tar.xz
tar xf cudnn-linux-x86_64-8.3.2.44_cuda11.5-archive.tar.xz
cp -a cudnn-linux-x86_64-8.3.2.44_cuda11.5-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-x86_64-8.3.2.44_cuda11.5-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
ldconfig
}
function install_117 {
echo "Installing CUDA 11.7 and CuDNN 8.5 and NCCL 2.14"
rm -rf /usr/local/cuda-11.7 /usr/local/cuda
# install CUDA 11.7.0 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run
chmod +x cuda_11.7.0_515.43.04_linux.run
./cuda_11.7.0_515.43.04_linux.run --toolkit --silent
rm -f cuda_11.7.0_515.43.04_linux.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-11.7 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://ossci-linux.s3.amazonaws.com/cudnn-linux-x86_64-8.5.0.96_cuda11-archive.tar.xz -O cudnn-linux-x86_64-8.5.0.96_cuda11-archive.tar.xz
tar xf cudnn-linux-x86_64-8.5.0.96_cuda11-archive.tar.xz
cp -a cudnn-linux-x86_64-8.5.0.96_cuda11-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-x86_64-8.5.0.96_cuda11-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
ldconfig
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
mkdir tmp_nccl && cd tmp_nccl
wget -q https://developer.download.nvidia.com/compute/redist/nccl/v2.14/nccl_2.14.3-1+cuda11.7_x86_64.txz
tar xf nccl_2.14.3-1+cuda11.7_x86_64.txz
cp -a nccl_2.14.3-1+cuda11.7_x86_64/include/* /usr/local/cuda/include/
cp -a nccl_2.14.3-1+cuda11.7_x86_64/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_nccl
ldconfig
}
function install_118 {
echo "Installing CUDA 11.8 and cuDNN 8.7 and NCCL 2.15"
rm -rf /usr/local/cuda-11.8 /usr/local/cuda
# install CUDA 11.8.0 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
chmod +x cuda_11.8.0_520.61.05_linux.run
./cuda_11.8.0_520.61.05_linux.run --toolkit --silent
rm -f cuda_11.8.0_520.61.05_linux.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-11.8 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/redist/cudnn/v8.7.0/local_installers/11.8/cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz -O cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz
tar xf cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz
cp -a cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
ldconfig
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
mkdir tmp_nccl && cd tmp_nccl
wget -q https://developer.download.nvidia.com/compute/redist/nccl/v2.15.5/nccl_2.15.5-1+cuda11.8_x86_64.txz
tar xf nccl_2.15.5-1+cuda11.8_x86_64.txz
cp -a nccl_2.15.5-1+cuda11.8_x86_64/include/* /usr/local/cuda/include/
cp -a nccl_2.15.5-1+cuda11.8_x86_64/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_nccl
ldconfig
}
function prune_116 {
echo "Pruning CUDA 11.6 and CuDNN"
#####################################################################################
# CUDA 11.6 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-11.6/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-11.6/lib64"
export GENCODE="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86"
export GENCODE_CUDNN="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
# all CUDA libs except CuDNN and CuBLAS (cudnn and cublas need arch 3.7 included)
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 11.6 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-11.6/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2022.1.1 $CUDA_BASE/nsight-systems-2021.5.2
}
function prune_117 {
echo "Pruning CUDA 11.7 and CuDNN"
#####################################################################################
# CUDA 11.7 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-11.7/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-11.7/lib64"
export GENCODE="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86"
export GENCODE_CUDNN="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
# all CUDA libs except CuDNN and CuBLAS (cudnn and cublas need arch 3.7 included)
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 11.6 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-11.7/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2022.2.0 $CUDA_BASE/nsight-systems-2022.1.3
}
function prune_118 {
echo "Pruning CUDA 11.8 and cuDNN"
#####################################################################################
# CUDA 11.8 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-11.8/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-11.8/lib64"
export GENCODE="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
# all CUDA libs except CuDNN and CuBLAS (cudnn and cublas need arch 3.7 included)
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 11.8 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-11.8/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2022.3.0 $CUDA_BASE/nsight-systems-2022.4.2/
}
# idiomatic parameter and option handling in sh
while test $# -gt 0
do
case "$1" in
11.6) install_116; prune_116
;;
11.7) install_117; prune_117
;;
11.8) install_118; prune_118
;;
*) echo "bad argument $1"; exit 1
;;
esac
shift
done